Biblio

Filters: Author is Som, Subhranil  [Clear All Filters]
2020-02-26
Bhatnagar, Dev, Som, Subhranil, Khatri, Sunil Kumar.  2019.  Advance Persistant Threat and Cyber Spying - The Big Picture, Its Tools, Attack Vectors and Countermeasures. 2019 Amity International Conference on Artificial Intelligence (AICAI). :828–839.

Advance persistent threat is a primary security concerns to the big organizations and its technical infrastructure, from cyber criminals seeking personal and financial information to state sponsored attacks designed to disrupt, compromising infrastructure, sidestepping security efforts thus causing serious damage to organizations. A skilled cybercriminal using multiple attack vectors and entry points navigates around the defenses, evading IDS/Firewall detection and breaching the network in no time. To understand the big picture, this paper analyses an approach to advanced persistent threat by doing the same things the bad guys do on a network setup. We will walk through various steps from foot-printing and reconnaissance, scanning networks, gaining access, maintaining access to finally clearing tracks, as in a real world attack. We will walk through different attack tools and exploits used in each phase and comparative study on their effectiveness, along with explaining their attack vectors and its countermeasures. We will conclude the paper by explaining the factors which actually qualify to be an Advance Persistent Threat.

2017-03-27
Phull, Sona, Som, Subhranil.  2016.  Symmetric Cryptography Using Multiple Access Circular Queues (MACQ). Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies. :107:1–107:6.

In order to provide secure data communication in present cyber space world, a stronger encryption technique becomes a necessity that can help people to protect their sensitive information from cryptanalyst. This paper proposes a novel symmetric block cipher algorithm that uses multiple access circular queues (MACQs) of variable lengths for diffusion of information to a greater extent. The keys are randomly generated and will be of variable lengths depending upon the size of each MACQ.A number of iterations of circular rotations, swapping of elements and XORing the key with queue elements are performed on each MACQ. S-box is used so that the relationship between the key and the cipher text remains indeterminate or obscure. These operations together will help in transforming the cipher into a much more complex and secure block cipher. This paper attempt to propose an encryption algorithm that is secure and fast.