Biblio

Filters: Author is Bridges, Robert A.  [Clear All Filters]
2018-02-27
Moore, Michael R., Bridges, Robert A., Combs, Frank L., Starr, Michael S., Prowell, Stacy J..  2017.  Modeling Inter-Signal Arrival Times for Accurate Detection of CAN Bus Signal Injection Attacks: A Data-Driven Approach to In-Vehicle Intrusion Detection. Proceedings of the 12th Annual Conference on Cyber and Information Security Research. :11:1–11:4.

Modern vehicles rely on hundreds of on-board electronic control units (ECUs) communicating over in-vehicle networks. As external interfaces to the car control networks (such as the on-board diagnostic (OBD) port, auxiliary media ports, etc.) become common, and vehicle-to-vehicle / vehicle-to-infrastructure technology is in the near future, the attack surface for vehicles grows, exposing control networks to potentially life-critical attacks. This paper addresses the need for securing the controller area network (CAN) bus by detecting anomalous traffic patterns via unusual refresh rates of certain commands. While previous works have identified signal frequency as an important feature for CAN bus intrusion detection, this paper provides the first such algorithm with experiments using three attacks in five (total) scenarios. Our data-driven anomaly detection algorithm requires only five seconds of training time (on normal data) and achieves true positive / false discovery rates of 0.9998/0.00298, respectively (micro-averaged across the five experimental tests).

2017-03-29
Harshaw, Christopher R., Bridges, Robert A., Iannacone, Michael D., Reed, Joel W., Goodall, John R..  2016.  GraphPrints: Towards a Graph Analytic Method for Network Anomaly Detection. Proceedings of the 11th Annual Cyber and Information Security Research Conference. :15:1–15:4.

This paper introduces a novel graph-analytic approach for detecting anomalies in network flow data called GraphPrints. Building on foundational network-mining techniques, our method represents time slices of traffic as a graph, then counts graphlets–-small induced subgraphs that describe local topology. By performing outlier detection on the sequence of graphlet counts, anomalous intervals of traffic are identified, and furthermore, individual IPs experiencing abnormal behavior are singled-out. Initial testing of GraphPrints is performed on real network data with an implanted anomaly. Evaluation shows false positive rates bounded by 2.84% at the time-interval level, and 0.05% at the IP-level with 100% true positive rates at both.