Biblio

Filters: Author is Juretus, Kyle  [Clear All Filters]
2020-02-26
Juretus, Kyle, Savidis, Ioannis.  2019.  Increasing the SAT Attack Resiliency of In-Cone Logic Locking. 2019 IEEE International Symposium on Circuits and Systems (ISCAS). :1–5.

A method to increase the resiliency of in-cone logic locking against the SAT attack is described in this paper. Current logic locking techniques provide protection through the addition of circuitry outside of the original logic cone. While the additional circuitry provides provable security against the SAT attack, other attacks, such as the removal attack, limit the efficacy of such techniques. Traditional in-cone logic locking is not prone to removal attacks, but is less secure against the SAT attack. The focus of this paper is, therefore, the analysis of in-cone logic locking to increase the security against the SAT attack, which provides a comparison between in-cone techniques and newly developed methodologies. A novel algorithm is developed that utilizes maximum fanout free cones (MFFC). The application of the algorithm limits the fanout of incorrect key information. The MFFC based algorithm resulted in an average increase of 61.8% in the minimum number of iterations required to complete the SAT attack across 1,000 different variable orderings of the circuit netlist while restricted to a 5% overhead in area.

2017-03-29
Juretus, Kyle, Savidis, Ioannis.  2016.  Reduced Overhead Gate Level Logic Encryption. Proceedings of the 26th Edition on Great Lakes Symposium on VLSI. :15–20.

Untrusted third-parties are found throughout the integrated circuit (IC) design flow resulting in potential threats in IC reliability and security. Threats include IC counterfeiting, intellectual property (IP) theft, IC overproduction, and the insertion of hardware Trojans. Logic encryption has emerged as a method of enhancing security against such threats, however, current implementations of logic encryption, including the XOR or look-up table (LUT) techniques, have high per-gate overheads in area, performance, and power. A novel gate level logic encryption technique with reduced per-gate overheads is described in this paper. In addition, a technique to expand the search space of a key sequence is provided, increasing the difficulty for an adversary to extract the key value. A power reduction of 41.50%, an estimated area reduction of 43.58%, and a performance increase of 34.54% is achieved when using the proposed gate level logic encryption instead of the LUT based technique for an encrypted AND gate.