Biblio

Filters: Author is Slavin, Rocky  [Clear All Filters]
2022-05-19
Zhang, Xueling, Wang, Xiaoyin, Slavin, Rocky, Niu, Jianwei.  2021.  ConDySTA: Context-Aware Dynamic Supplement to Static Taint Analysis. 2021 IEEE Symposium on Security and Privacy (SP). :796–812.
Static taint analyses are widely-applied techniques to detect taint flows in software systems. Although they are theoretically conservative and de-signed to detect all possible taint flows, static taint analyses almost always exhibit false negatives due to a variety of implementation limitations. Dynamic programming language features, inaccessible code, and the usage of multiple programming languages in a software project are some of the major causes. To alleviate this problem, we developed a novel approach, DySTA, which uses dynamic taint analysis results as additional sources for static taint analysis. However, naïvely adding sources causes static analysis to lose context sensitivity and thus produce false positives. Thus, we developed a hybrid context matching algorithm and corresponding tool, ConDySTA, to preserve context sensitivity in DySTA. We applied REPRODROID [1], a comprehensive benchmarking framework for Android analysis tools, to evaluate ConDySTA. The results show that across 28 apps (1) ConDySTA was able to detect 12 out of 28 taint flows which were not detected by any of the six state-of-the-art static taint analyses considered in ReproDroid, and (2) ConDySTA reported no false positives, whereas nine were reported by DySTA alone. We further applied ConDySTA and FlowDroid to 100 top Android apps from Google Play, and ConDySTA was able to detect 39 additional taint flows (besides 281 taint flows found by FlowDroid) while preserving the context sensitivity of FlowDroid.
2019-11-11
Wang, Xiaoyin, Qin, Xue, Bokaei Hosseini, Mitra, Slavin, Rocky, Breaux, Travis D., Niu, Jianwei.  2018.  GUILeak: Tracing Privacy Policy Claims on User Input Data for Android Applications. 2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE). :37–47.
The Android mobile platform supports billions of devices across more than 190 countries around the world. This popularity coupled with user data collection by Android apps has made privacy protection a well-known challenge in the Android ecosystem. In practice, app producers provide privacy policies disclosing what information is collected and processed by the app. However, it is difficult to trace such claims to the corresponding app code to verify whether the implementation is consistent with the policy. Existing approaches for privacy policy alignment focus on information directly accessed through the Android platform (e.g., location and device ID), but are unable to handle user input, a major source of private information. In this paper, we propose a novel approach that automatically detects privacy leaks of user-entered data for a given Android app and determines whether such leakage may violate the app's privacy policy claims. For evaluation, we applied our approach to 120 popular apps from three privacy-relevant app categories: finance, health, and dating. The results show that our approach was able to detect 21 strong violations and 18 weak violations from the studied apps.
2017-10-25
Slavin, Rocky, Wang, Xiaoyin, Hosseini, Mitra Bokaei, Hester, James, Krishnan, Ram, Bhatia, Jaspreet, Breaux, Travis D., Niu, Jianwei.  2016.  Toward a Framework for Detecting Privacy Policy Violations in Android Application Code. Proceedings of the 38th International Conference on Software Engineering. :25–36.

Mobile applications frequently access sensitive personal information to meet user or business requirements. Because such information is sensitive in general, regulators increasingly require mobile-app developers to publish privacy policies that describe what information is collected. Furthermore, regulators have fined companies when these policies are inconsistent with the actual data practices of mobile apps. To help mobile-app developers check their privacy policies against their apps' code for consistency, we propose a semi-automated framework that consists of a policy terminology-API method map that links policy phrases to API methods that produce sensitive information, and information flow analysis to detect misalignments. We present an implementation of our framework based on a privacy-policy-phrase ontology and a collection of mappings from API methods to policy phrases. Our empirical evaluation on 477 top Android apps discovered 341 potential privacy policy violations.

2015-01-13
Slavin, Rocky, Lehker, J.M., Niu, Jianwei, Breaux, Travis.  2014.  Managing Security Requirement Patterns Using Feature Diagram Hierarchies. IEEE 22nd International Requirements Engineering Conference.

Security requirements patterns represent reusable security practices that software engineers can apply to improve security in their system. Reusing best practices that others have employed could have a number of benefits, such as decreasing the time spent in the requirements elicitation process or improving the quality of the product by reducing product failure risk. Pattern selection can be difficult due to the diversity of applicable patterns from which an analyst has to choose. The challenge is that identifying the most appropriate pattern for a situation can be cumbersome and time-consuming. We propose a new method that combines an inquiry-cycle based approach with the feature diagram notation to review only relevant patterns and quickly select the most appropriate patterns for the situation. Similar to patterns themselves, our approach captures expert knowledge to relate patterns based on decisions made by the pattern user. The resulting pattern hierarchies allow users to be guided through these decisions by questions, which introduce related patterns in order to help the pattern user select the most appropriate patterns for their situation, thus resulting in better requirement generation. We evaluate our approach using access control patterns in a pattern user study.

2014-10-24
Hibshi, Hanan, Slavin, Rocky, Niu, Jianwei, Breaux, Travis D.  2014.  Rethinking Security Requirements in RE Research.

As information security became an increasing concern for software developers and users, requirements engineering (RE) researchers brought new insight to security requirements. Security requirements aim to address security at the early stages of system design while accommodating the complex needs of different stakeholders. Meanwhile, other research communities, such as usable privacy and security, have also examined these requirements with specialized goal to make security more usable for stakeholders from product owners, to system users and administrators. In this paper we report results from conducting a literature survey to compare security requirements research from RE Conferences with the Symposium on Usable Privacy and Security (SOUPS). We report similarities between the two research areas, such as common goals, technical definitions, research problems, and directions. Further, we clarify the differences between these two communities to understand how they can leverage each other’s insights. From our analysis, we recommend new directions in security requirements research mainly to expand the meaning of security requirements in RE to reflect the technological advancements that the broader field of security is experiencing. These recommendations to encourage cross- collaboration with other communities are not limited to the security requirements area; in fact, we believe they can be generalized to other areas of RE. 

2015-01-13
Hibshi, Hanan, Slavin, Rocky, Niu, Jianwei, Breaux, Travis.  2014.  Rethinking Security Requirements in RE Research.

As information security became an increasing
concern for software developers and users, requirements
engineering (RE) researchers brought new insight to security
requirements. Security requirements aim to address security at
the early stages of system design while accommodating the
complex needs of different stakeholders. Meanwhile, other
research communities, such as usable privacy and security,
have also examined these requirements with specialized goal to
make security more usable for stakeholders from product
owners, to system users and administrators. In this paper we
report results from conducting a literature survey to compare
security requirements research from RE Conferences with the
Symposium on Usable Privacy and Security (SOUPS). We
report similarities between the two research areas, such as
common goals, technical definitions, research problems, and
directions. Further, we clarify the differences between these
two communities to understand how they can leverage each
other’s insights. From our analysis, we recommend new
directions in security requirements research mainly to expand
the meaning of security requirements in RE to reflect the
technological advancements that the broader field of security is
experiencing. These recommendations to encourage crosscollaboration
with other communities are not limited to the
security requirements area; in fact, we believe they can be
generalized to other areas of RE.

Slavin, Rocky, Shen, Hui, Niu, Jianwei.  2012.  Characterizations and Boundaries of Security Requirements Patterns. IEEE 2nd Workshop on Requirements Engineering Patterns (RePa’12).

Very often in the software development life cycle, security is applied too late or important security aspects are overlooked. Although the use of security patterns is gaining popularity, the current state of security requirements patterns is such that there is not much in terms of a defining structure. To address this issue, we are working towards defining the important characteristics as well as the boundaries for security requirements patterns in order to make them more effective. By examining an existing general pattern format that describes how security patterns should be structured and comparing it to existing security requirements patterns, we are deriving characterizations and boundaries for security requirements patterns. From these attributes, we propose a defining format. We hope that these can reduce user effort in elicitation and specification of security requirements patterns.