Biblio
Phishing attacks have reached record volumes in recent years. Simultaneously, modern phishing websites are growing in sophistication by employing diverse cloaking techniques to avoid detection by security infrastructure. In this paper, we present PhishFarm: a scalable framework for methodically testing the resilience of anti-phishing entities and browser blacklists to attackers' evasion efforts. We use PhishFarm to deploy 2,380 live phishing sites (on new, unique, and previously-unseen .com domains) each using one of six different HTTP request filters based on real phishing kits. We reported subsets of these sites to 10 distinct anti-phishing entities and measured both the occurrence and timeliness of native blacklisting in major web browsers to gauge the effectiveness of protection ultimately extended to victim users and organizations. Our experiments revealed shortcomings in current infrastructure, which allows some phishing sites to go unnoticed by the security community while remaining accessible to victims. We found that simple cloaking techniques representative of real-world attacks- including those based on geolocation, device type, or JavaScript- were effective in reducing the likelihood of blacklisting by over 55% on average. We also discovered that blacklisting did not function as intended in popular mobile browsers (Chrome, Safari, and Firefox), which left users of these browsers particularly vulnerable to phishing attacks. Following disclosure of our findings, anti-phishing entities are now better able to detect and mitigate several cloaking techniques (including those that target mobile users), and blacklisting has also become more consistent between desktop and mobile platforms- but work remains to be done by anti-phishing entities to ensure users are adequately protected. Our PhishFarm framework is designed for continuous monitoring of the ecosystem and can be extended to test future state-of-the-art evasion techniques used by malicious websites.
Network Management is a critical process for an enterprise to configure and monitor the network devices using cost effective methods. It is imperative for it to be robust and free from adversarial or accidental security flaws. With the advent of cloud computing and increasing demands for centralized network control, conventional management protocols like SNMP appear inadequate and newer techniques like NMDA and NETCONF have been invented. However, unlike SNMP which underwent improvements concentrating on security, the new data management and storage techniques have not been scrutinized for the inherent security flaws. In this paper, we identify several vulnerabilities in the widely used critical infrastructures which leverage the Network Management Datastore Architecture design (NMDA). Software Defined Networking (SDN), a proponent of NMDA, heavily relies on its datastores to program and manage the network. We base our research on the security challenges put forth by the existing datastore's design as implemented by the SDN controllers. The vulnerabilities identified in this work have a direct impact on the controllers like OpenDayLight, Open Network Operating System and their proprietary implementations (by CISCO, Ericsson, RedHat, Brocade, Juniper, etc). Using our threat detection methodology, we demonstrate how the NMDA-based implementations are vulnerable to attacks which compromise availability, integrity, and confidentiality of the network. We finally propose defense measures to address the security threats in the existing design and discuss the challenges faced while employing these countermeasures.
Software-Defined Network (SDN) is a novel architecture created to address the issues of traditional and vertically integrated networks. To increase cost-effectiveness and enable logical control, SDN provides high programmability and centralized view of the network through separation of network traffic delivery (the "data plane") from network configuration (the "control plane"). SDN controllers and related protocols are rapidly evolving to address the demands for scaling in complex enterprise networks. Because of the evolution of modern SDN technologies, production networks employing SDN are prone to several security vulnerabilities. The rate at which SDN frameworks are evolving continues to overtake attempts to address their security issues. According to our study, existing defense mechanisms, particularly SDN-based firewalls, face new and SDN-specific challenges in successfully enforcing security policies in the underlying network. In this paper, we identify problems associated with SDN-based firewalls, such as ambiguous flow path calculations and poor scalability in large networks. We survey existing SDN-based firewall designs and their shortcomings in protecting a dynamically scaling network like a data center. We extend our study by evaluating one such SDN-specific security solution called FlowGuard, and identifying new attack vectors and vulnerabilities. We also present corresponding threat detection techniques and respective mitigation strategies.
Recently, attribute-based access control (ABAC) has emerged as a convenient paradigm for specifying, enforcing and maintaining rich and flexible authorization policies, leveraging attributes originated from multiple sources, e.g., operative systems, software modules, remote services, etc. However, attackers may try to bypass ABAC policies by compromising such sources to forge the attributes they provide, e.g., by deliberately manipulating the data contained within those attributes at will, in an effort to gain unintended access to sensitive resources as a result. In such a context, performing a proper risk assessment of ABAC policies, taking into account their enlisted attributes as well as their corresponding sources, becomes highly convenient to overcome zero-day security incidents or vulnerabilities, before they can be later exploited by attackers. With this in mind, we introduce RiskPol, an automated risk assessment framework for ABAC policies based on dynamically combining previously-assigned trust scores for each attribute source, such that overall scores at the policy level can be later obtained and used as a reference for performing a risk assessment on each policy. In this paper, we detail the general intuition behind our approach, its current status, as well as our plans for future work.
OpenFlow, as the prevailing technique for Software-Defined Networks (SDNs), introduces significant programmability, granularity, and flexibility for many network applications to effectively manage and process network flows. However, because OpenFlow attempts to keep the SDN data plane simple and efficient, it focuses solely on L2/L3 network transport and consequently lacks the fundamental ability of stateful forwarding for the data plane. Also, OpenFlow provides a very limited access to connection-level information in the SDN controller. In particular, for any network access management applications on SDNs that require comprehensive network state information, these inherent limitations of OpenFlow pose significant challenges in supporting network services. To address these challenges, we propose an innovative connection tracking framework called STATEMON that introduces a global state-awareness to provide better access control in SDNs. STATEMON is based on a lightweight extension of OpenFlow for programming the stateful SDN data plane, while keeping the underlying network devices as simple as possible. To demonstrate the practicality and feasibility of STATEMON, we implement and evaluate a stateful network firewall and port knocking applications for SDNs, using the APIs provided by STATEMON. Our evaluations show that STATEMON introduces minimal message exchanges for monitoring active connections in SDNs with manageable overhead (3.27% throughput degradation).
Honeynet is a collection of honeypots that are set up to attract as many attackers as possible to learn about their patterns, tactics, and behaviors. However, existing honeypots suffer from a variety of fingerprinting techniques, and the current honeynet architecture does not fully utilize features of residing honeypots due to its coarse-grained data control mechanisms. To address these challenges, we propose an SDN-based intelligent honeynet called HoneyMix. HoneyMix leverages the rich programmability of SDN to circumvent attackers' detection mechanisms and enables fine-grained data control for honeynet. To do this, HoneyMix simultaneously establishes multiple connections with a set of honeypots and selects the most desirable connection to inspire attackers to remain connected. In this paper, we present the HoneyMix architecture and a description of its core components.