Biblio
Cameras have become nearly ubiquitous with the rise of smartphones and laptops. New wearable devices, such as Google Glass, focus directly on using live video data to enable augmented reality and contextually enabled services. However, granting applications full access to video data exposes more information than is necessary for their functionality, introducing privacy risks. We propose a privilege-separation architecture for visual recognizer applications that encourages modularization and least privilege–-separating the recognizer logic, sandboxing it to restrict filesystem and network access, and restricting what it can extract from the raw video data. We designed and implemented a prototype that separates the recognizer and application modules and evaluated our architecture on a set of 17 computer-vision applications. Our experiments show that our prototype incurs low overhead for each of these applications, reduces some of the privacy risks associated with these applications, and in some cases can actually increase the performance due to increased parallelism and concurrency.
We examine the security of home smart locks: cyber-physical devices that replace traditional door locks with deadbolts that can be electronically controlled by mobile devices or the lock manufacturer's remote servers. We present two categories of attacks against smart locks and analyze the security of five commercially-available locks with respect to these attacks. Our security analysis reveals that flaws in the design, implementation, and interaction models of existing locks can be exploited by several classes of adversaries, allowing them to learn private information about users and gain unauthorized home access. To guide future development of smart locks and similar Internet of Things devices, we propose several defenses that mitigate the attacks we present. One of these defenses is a novel approach to securely and usably communicate a user's intended actions to smart locks, which we prototype and evaluate. Ultimately, our work takes a first step towards illuminating security challenges in the system design and novel functionality introduced by emerging IoT systems.