Biblio

Filters: Author is Skopik, Florian  [Clear All Filters]
2020-02-17
Skopik, Florian, Filip, Stefan.  2019.  Design principles for national cyber security sensor networks: Lessons learned from small-scale demonstrators. 2019 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). :1–8.
The timely exchange of information on new threats and vulnerabilities has become a cornerstone of effective cyber defence in recent years. Especially national authorities increasingly assume their role as information brokers through national cyber security centres and distribute warnings on new attack vectors and vital recommendations on how to mitigate them. Although many of these initiatives are effective to some degree, they also suffer from severe limitations. Many steps in the exchange process require extensive human involvement to manually review, vet, enrich, analyse and distribute security information. Some countries have therefore started to adopt distributed cyber security sensor networks to enable the automatic collection, analysis and preparation of security data and thus effectively overcome limiting scalability factors. The basic idea of IoC-centric cyber security sensor networks is that the national authorities distribute Indicators of Compromise (IoCs) to organizations and receive sightings in return. This effectively helps them to estimate the spreading of malware, anticipate further trends of spreading and derive vital findings for decision makers. While this application case seems quite simple, there are some tough questions to be answered in advance, which steer the further design decisions: How much can the monitored organization be trusted to be a partner in the search for malware? How much control of the scanning process should be delegated to the organization? What is the right level of search depth? How to deal with confidential indicators? What can be derived from encrypted traffic? How are new indicators distributed, prioritized, and scan targets selected in a scalable manner? What is a good strategy to re-schedule scans to derive meaningful data on trends, such as rate of spreading? This paper suggests a blueprint for a sensor network and raises related questions, outlines design principles, and discusses lessons learned from small-scale pilots.
2017-04-20
Wurzenberger, Markus, Skopik, Florian, Fiedler, Roman, Kastner, Wolfgang.  2016.  Discovering Insider Threats from Log Data with High-Performance Bioinformatics Tools. Proceedings of the 8th ACM CCS International Workshop on Managing Insider Security Threats. :109–112.

Since the number of cyber attacks by insider threats and the damage caused by them has been increasing over the last years, organizations are in need for specific security solutions to counter these threats. To limit the damage caused by insider threats, the timely detection of erratic system behavior and malicious activities is of primary importance. We observed a major paradigm shift towards anomaly-focused detection mechanisms, which try to establish a baseline of system behavior – based on system logging data – and report any deviations from this baseline. While these approaches are promising, they usually have to cope with scalability issues. As the amount of log data generated during IT operations is exponentially growing, high-performance security solutions are required that can handle this huge amount of data in real time. In this paper, we demonstrate how high-performance bioinformatics tools can be leveraged to tackle this issue, and we demonstrate their application to log data for outlier detection, to timely detect anomalous system behavior that points to insider attacks.