Biblio
With the advent of the big data era, information systems have exhibited some new features, including boundary obfuscation, system virtualization, unstructured and diversification of data types, and low coupling among function and data. These features not only lead to a big difference between big data technology (DT) and information technology (IT), but also promote the upgrading and evolution of network security technology. In response to these changes, in this paper we compare the characteristics between IT era and DT era, and then propose four DT security principles: privacy, integrity, traceability, and controllability, as well as active and dynamic defense strategy based on "propagation prediction, audit prediction, dynamic management and control". We further discuss the security challenges faced by DT and the corresponding assurance strategies. On this basis, the big data security technologies can be divided into four levels: elimination, continuation, improvement, and innovation. These technologies are analyzed, combed and explained according to six categories: access control, identification and authentication, data encryption, data privacy, intrusion prevention, security audit and disaster recovery. The results will support the evolution of security technologies in the DT era, the construction of big data platforms, the designation of security assurance strategies, and security technology choices suitable for big data.
Recent advancement of smart devices and wearable tech-nologies greatly enlarges the variety of personal data people can track. Applications and services can leverage such data to provide better life support, but also impose privacy and security threats. Obfuscation schemes, consequently, have been developed to retain data access while mitigate risks. Compared to offering choices of releasing raw data and not releasing at all, we examine the effect of adding a data obfuscation option on users' disclosure decisions when configuring applications' access, and how that effect varies with data types and application contexts. Our online user experiment shows that users are less likely to block data access when the obfuscation option is available except for locations. This effect significantly differs between applications for domain-specific dynamic tracking data, but not for generic personal traits. We further unpack the role of context and discuss the design opportunities.
Opportunistic Situation Identification (OSI) is new paradigms for situation-aware systems, in which contexts for situation identification are sensed through sensors that happen to be available rather than pre-deployed and application-specific ones. OSI extends the application usage scale and reduces system costs. However, designing and implementing OSI module of situation-aware systems encounters several challenges, including the uncertainty of context availability, vulnerable network connectivity and privacy threat. This paper proposes a novel middleware framework to tackle such challenges, and its intuition is that it facilitates performing the situation reasoning locally on a smartphone without needing to rely on the cloud, thus reducing the dependency on the network and being more privacy-preserving. To realize such intuitions, we propose a hybrid learning approach to maximize the reasoning accuracy using limited phone's storage space, with the combination of two the-state-the-art techniques. Specifically, this paper provides a genetic algorithm based optimization approach to determine which pre-computed models will be selected for storage under the storage constraints. Validation of the approach based on an open dataset indicates that the proposed approach achieves higher accuracy with comparatively small storage cost. Further, the proposed utility function for model selection performs better than three baseline utility functions.