Biblio

Filters: Author is Gai, Keke  [Clear All Filters]
2023-03-03
Yang, Gangqiang, Shi, Zhengyuan, Chen, Cheng, Xiong, Hailiang, Hu, Honggang, Wan, Zhiguo, Gai, Keke, Qiu, Meikang.  2022.  Work-in-Progress: Towards a Smaller than Grain Stream Cipher: Optimized FPGA Implementations of Fruit-80. 2022 International Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES). :19–20.
Fruit-80, an ultra-lightweight stream cipher with 80-bit secret key, is oriented toward resource constrained devices in the Internet of Things. In this paper, we propose area and speed optimization architectures of Fruit-80 on FPGAs. The area optimization architecture reuses NFSR&LFSR feedback functions and achieves the most suitable ratio of look-up-tables and flip-flops. The speed optimization architecture adopts a hybrid approach for parallelization and reduces the latency of long data paths by pre-generating primary feedback and inserting flip-flops. In conclusion, the optimal throughput-to-area ratio of the speed optimization architecture is better than that of Grain v1. The area optimization architecture occupies only 35 slices on Xilinx Spartan-3 FPGA, smaller than that of Grain and other common stream ciphers. To the best of our knowledge, this result sets a new record of the minimum area in lightweight cipher implementations on FPGA.
2022-05-09
Huang, Liangqun, Xu, Lei, Zhu, Liehuang, Gai, Keke.  2021.  A Blockchain-Assisted Privacy-Preserving Cloud Computing Method with Multiple Keys. 2021 IEEE 6th International Conference on Smart Cloud (SmartCloud). :19–25.
How to analyze users' data without compromising individual privacy is an important issue in cloud computing. In order to protect privacy and enable the cloud to perform computing, users can apply homomorphic encryption schemes to their data. Most of existing homomorphic encryption-based cloud computing methods require that users' data are encrypted with the same key. While in practice, different users may prefer to use different keys. In this paper, we propose a privacy-preserving cloud computing method which adopts a double-trapdoor homomorphic encryption scheme to deal with the multi-key issue. The proposed method uses two cloud servers to analyze users' encrypted data. And we propose to use blockchain to monitor the information exchanged between the servers. Security analysis shows that the introduction of blockchain can help to prevent the two servers from colluding with each other, hence data privacy is further enhanced. And we conduct simulations to demonstrate the feasibility of the propose method.
2021-09-16
Du, Xin, Tang, Songtao, Lu, Zhihui, Wet, Jie, Gai, Keke, Hung, Patrick C.K..  2020.  A Novel Data Placement Strategy for Data-Sharing Scientific Workflows in Heterogeneous Edge-Cloud Computing Environments. 2020 IEEE International Conference on Web Services (ICWS). :498–507.
The deployment of datasets in the heterogeneous edge-cloud computing paradigm has received increasing attention in state-of-the-art research. However, due to their large sizes and the existence of private scientific datasets, finding an optimal data placement strategy that can minimize data transmission as well as improve performance, remains a persistent problem. In this study, the advantages of both edge and cloud computing are combined to construct a data placement model that works for multiple scientific workflows. Apparently, the most difficult research challenge is to provide a data placement strategy to consider shared datasets, both within individual and among multiple workflows, across various geographically distributed environments. According to the constructed model, not only the storage capacity of edge micro-datacenters, but also the data transfer between multiple clouds across regions must be considered. To address this issue, we considered the characteristics of this model and identified the factors that are causing the transmission delay. The authors propose using a discrete particle swarm optimization algorithm with differential evolution (DE-DPSO) to distribute dataset during workflow execution. Based on this, a new data placement strategy named DE-DPSO-DPS is proposed. DE-DPSO-DPS is evaluated using several experiments designed in simulated heterogeneous edge-cloud computing environments. The results demonstrate that our data placement strategy can effectively reduce the data transmission time and achieve superior performance as compared to traditional strategies for data-sharing scientific workflows.
2017-04-24
Li, Yibin, Gai, Keke, Ming, Zhong, Zhao, Hui, Qiu, Meikang.  2016.  Intercrossed Access Controls for Secure Financial Services on Multimedia Big Data in Cloud Systems. ACM Trans. Multimedia Comput. Commun. Appl.. 12:67:1–67:18.

The dramatically growing demand of Cyber Physical and Social Computing (CPSC) has enabled a variety of novel channels to reach services in the financial industry. Combining cloud systems with multimedia big data is a novel approach for Financial Service Institutions (FSIs) to diversify service offerings in an efficient manner. However, the security issue is still a great issue in which the service availability often conflicts with the security constraints when the service media channels are varied. This paper focuses on this problem and proposes a novel approach using the Semantic-Based Access Control (SBAC) techniques for acquiring secure financial services on multimedia big data in cloud computing. The proposed approach is entitled IntercroSsed Secure Big Multimedia Model (2SBM), which is designed to secure accesses between various media through the multiple cloud platforms. The main algorithms supporting the proposed model include the Ontology-Based Access Recognition (OBAR) Algorithm and the Semantic Information Matching (SIM) Algorithm. We implement an experimental evaluation to prove the correctness and adoptability of our proposed scheme.