Biblio
A mail spoofing attack is a harmful activity that modifies the source of the mail and trick users into believing that the message originated from a trusted sender whereas the actual sender is the attacker. Based on the previous work, this paper analyzes the transmission process of an email. Our work identifies new attacks suitable for bypassing SPF, DMARC, and Mail User Agent’s protection mechanisms. We can forge much more realistic emails to penetrate the famous mail service provider like Tencent by conducting the attack. By completing a large-scale experiment on these well-known mail service providers, we find some of them are affected by the related vulnerabilities. Some of the bypass methods are different from previous work. Our work found that this potential security problem can only be effectively protected when all email service providers have a standard view of security and can configure appropriate security policies for each email delivery node. In addition, we also propose a mitigate method to defend against these attacks. We hope our work can draw the attention of email service providers and users and effectively reduce the potential risk of phishing email attacks on them.
The massive amount of data that is being collected by today's society has the potential to advance scientific knowledge and boost innovations. However, people often lack sufficient computing resources to analyze their large-scale data in a cost-effective and timely way. Cloud computing offers access to vast computing resources on an on-demand and pay-per-use basis, which is a practical way for people to analyze their huge data sets. However, since their data contain sensitive information that needs to be kept secret for ethical, security, or legal reasons, many people are reluctant to adopt cloud computing. For the first time in the literature, we propose a secure outsourcing algorithm for large-scale quadratic programs (QPs), which is one of the most fundamental problems in data analysis. Specifically, based on simple linear algebra operations, we design a low-complexity QP transformation that protects the private data in a QP. We show that the transformed QP is computationally indistinguishable under a chosen plaintext attack (CPA), i.e., CPA-secure. We then develop a parallel algorithm to solve the transformed QP at the cloud, and efficiently find the solution to the original QP at the user. We implement the proposed algorithm on the Amazon Elastic Compute Cloud (EC2) and a laptop. We find that our proposed algorithm offers significant time savings for the user and is scalable to the size of the QP.