Biblio

Filters: Author is Fan, Wei  [Clear All Filters]
2017-10-19
Zhang, Chenwei, Xie, Sihong, Li, Yaliang, Gao, Jing, Fan, Wei, Yu, Philip S..  2016.  Multi-source Hierarchical Prediction Consolidation. Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. :2251–2256.
In big data applications such as healthcare data mining, due to privacy concerns, it is necessary to collect predictions from multiple information sources for the same instance, with raw features being discarded or withheld when aggregating multiple predictions. Besides, crowd-sourced labels need to be aggregated to estimate the ground truth of the data. Due to the imperfection caused by predictive models or human crowdsourcing workers, noisy and conflicting information is ubiquitous and inevitable. Although state-of-the-art aggregation methods have been proposed to handle label spaces with flat structures, as the label space is becoming more and more complicated, aggregation under a label hierarchical structure becomes necessary but has been largely ignored. These label hierarchies can be quite informative as they are usually created by domain experts to make sense of highly complex label correlations such as protein functionality interactions or disease relationships. We propose a novel multi-source hierarchical prediction consolidation method to effectively exploits the complicated hierarchical label structures to resolve the noisy and conflicting information that inherently originates from multiple imperfect sources. We formulate the problem as an optimization problem with a closed-form solution. The consolidation result is inferred in a totally unsupervised, iterative fashion. Experimental results on both synthetic and real-world data sets show the effectiveness of the proposed method over existing alternatives.
2017-04-24
Sun, Degang, Zhang, Jie, Fan, Wei, Wang, Tingting, Liu, Chao, Huang, Weiqing.  2016.  SPLM: Security Protection of Live Virtual Machine Migration in Cloud Computing. Proceedings of the 4th ACM International Workshop on Security in Cloud Computing. :2–9.

Virtual machine live migration technology, as an important support for cloud computing, has become a central issue in recent years. The virtual machines' runtime environment is migrated from the original physical server to another physical server, maintaining the virtual machines running at the same time. Therefore, it can make load balancing among servers and ensure the quality of service. However, virtual machine migration security issue cannot be ignored due to the immature development of it. This paper we analyze the security threats of the virtual machine migration, and compare the current proposed protection measures. While, these methods either rely on hardware, or lack adequate security and expansibility. In the end, we propose a security model of live virtual machine migration based on security policy transfer and encryption, named as SPLM (Security Protection of Live Migration) and analyze its security and reliability, which proves that SPLM is better than others. This paper can be useful for the researchers to work on this field. The security study of live virtual machine migration in this paper provides a certain reference for the research of virtualization security, and is of great significance.