Biblio
In this paper, we present a chaos-based information rotated polar coding scheme for enhancing the reliability and security of visible light communication (VLC) systems. In our scheme, we rotate the original information, wherein the rotation principle is determined by two chaotic sequences. Then the rotated information is encoded by secure polar coding scheme. After the channel polarization achieved by the polar coding, we could identify the bit-channels providing good transmission conditions for legitimate users and the bit-channels with bad conditions for eavesdroppers. Simulations are performed over the visible light wiretap channel. The results demonstrate that compared with existing schemes, the proposed scheme can achieve better reliability and security even when the eavesdroppers have better channel conditions.
Platoon is one of cooperative driving applications where a set of vehicles can collaboratively sense each other for driving safety and traffic efficiency. However, platoon without security insurance makes the cooperative vehicles vulnerable to cyber-attacks, which may cause life-threatening accidents. In this paper, we introduce malicious attacks in platoon maneuvers. To defend against these attacks, we propose a Cyphertext-Policy Attribute-Based Encryption (CP-ABE) based Platoon Secure Sensing scheme, named CPSS. In the CPSS, platoon key is encapsulated in the access control structure in the key distribution process, so that interference messages sending by attackers without the platoon key could be ignored. Therefore, the sensing data which contains speed and position information can be protected. In this way, speed and distance fluctuations caused by attacks can be mitigated even eliminated thereby avoiding the collisions and ensuring the overall platoon stability. Time complexity analysis shows that the CPSS is more efficient than that of the polynomial time solutions. Finally, to evaluate capabilities of the CPSS, we integrate a LTE-V2X with platoon maneuvers based on Veins platform. The evaluation results show that the CPSS outperforms the baseline algorithm by 25% in terms of distance variations.
In a spectrally congested environment or a spectrally contested environment which often occurs in cyber security applications, multiple signals are often mixed together with significant overlap in spectrum. This makes the signal detection and parameter estimation task very challenging. In our previous work, we have demonstrated the feasibility of using a second order spectrum correlation function (SCF) cyclostationary feature to perform mixed signal detection and parameter estimation. In this paper, we present our recent work on software defined radio (SDR) based implementation and demonstration of such mixed signal detection algorithms. Specifically, we have developed a software defined radio based mixed RF signal generator to generate mixed RF signals in real time. A graphical user interface (GUI) has been developed to allow users to conveniently adjust the number of mixed RF signal components, the amplitude, initial time delay, initial phase offset, carrier frequency, symbol rate, modulation type, and pulse shaping filter of each RF signal component. This SDR based mixed RF signal generator is used to transmit desirable mixed RF signals to test the effectiveness of our developed algorithms. Next, we have developed a software defined radio based mixed RF signal detector to perform the mixed RF signal detection. Similarly, a GUI has been developed to allow users to easily adjust the center frequency and bandwidth of band of interest, perform time domain analysis, frequency domain analysis, and cyclostationary domain analysis.
A two-server password-based authentication (2PA) protocol is a special kind of authentication primitive that provides additional protection for the user's password. Through a 2PA protocol, a user can distribute his low-entropy password between two authentication servers in the initialization phase and authenticate himself merely via a matching password in the login phase. No single server can learn any information about the user's password, nor impersonate the legitimate user to authenticate to the honest server. In this paper, we first formulate and realize the security definition of two-server password-based authentication in the well-known universal composability (UC) framework, which thus provides desirable properties such as composable security. We show that our construction is suitable for the asymmetric communication model in which one server acts as the front-end server interacting directly with the user and the other stays backstage. Then, we show that our protocol could be easily extended to more complicate password-based cryptographic protocols such as two-server password-authenticated key exchange (2PAKE) and two-server password-authenticated secret sharing (2PASS), which enjoy stronger security guarantees and better efficiency performances in comparison with the existing schemes.