Biblio

Filters: Author is Wu, Yang  [Clear All Filters]
2020-01-21
Cui, Liqun, Dong, Mianxiong, Ota, Kaoru, Wu, Jun, Li, Jianhua, Wu, Yang.  2019.  NSTN: Name-Based Smart Tracking for Network Status in Information-Centric Internet of Things. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). :1–6.
Internet of Things(IoT) is an important part of the new generation of information technology and an important stage of development in the era of informatization. As a next generation network, Information Centric Network (ICN) has been introduced into the IoT, leading to the content independence of IC-IoT. To manage the changing network conditions and diagnose the cause of anomalies within it, network operators must obtain and analyze network status information from monitoring tools. However, traditional network supervision method will not be applicable to IC-IoT centered on content rather than IP. Moreover, the surge in information volume will also bring about insufficient information distribution, and the data location in the traditional management information base is fixed and cannot be added or deleted. To overcome these problems, we propose a name-based smart tracking system to store network state information in the IC-IoT. Firstly, we design a new structure of management information base that records various network state information and changes its naming format. Secondly, we use a tracking method to obtain the required network status information. When the manager issues a status request, each data block has a defined data tracking table to record past requests, the location of the status data required can be located according to it. Thirdly, we put forward an adaptive network data location replacement strategy based on the importance of stored data blocks, so that the information with higher importance will be closer to the management center for more efficient acquisition. Simulation results indicate the feasibility of the proposed scheme.
2017-05-16
Chen, Ang, Wu, Yang, Haeberlen, Andreas, Zhou, Wenchao, Loo, Boon Thau.  2016.  The Good, the Bad, and the Differences: Better Network Diagnostics with Differential Provenance. Proceedings of the 2016 ACM SIGCOMM Conference. :115–128.

In this paper, we propose a new approach to diagnosing problems in complex distributed systems. Our approach is based on the insight that many of the trickiest problems are anomalies. For instance, in a network, problems often affect only a small fraction of the traffic (e.g., perhaps a certain subnet), or they only manifest infrequently. Thus, it is quite common for the operator to have “examples” of both working and non-working traffic readily available – perhaps a packet that was misrouted, and a similar packet that was routed correctly. In this case, the cause of the problem is likely to be wherever the two packets were treated differently by the network. We present the design of a debugger that can leverage this information using a novel concept that we call differential provenance. Differential provenance tracks the causal connections between network states and state changes, just like classical provenance, but it can additionally perform root-cause analysis by reasoning about the differences between two provenance trees. We have built a diagnostic tool that is based on differential provenance, and we have used our tool to debug a number of complex, realistic problems in two scenarios: software-defined networks and MapReduce jobs. Our results show that differential provenance can be maintained at relatively low cost, and that it can deliver very precise diagnostic information; in many cases, it can even identify the precise root cause of the problem.