Biblio

Filters: Author is Yang, Junfeng  [Clear All Filters]
2019-12-17
Zhao, Shixiong, Gu, Rui, Qiu, Haoran, Li, Tsz On, Wang, Yuexuan, Cui, Heming, Yang, Junfeng.  2018.  OWL: Understanding and Detecting Concurrency Attacks. 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :219-230.
Just like bugs in single-threaded programs can lead to vulnerabilities, bugs in multithreaded programs can also lead to concurrency attacks. We studied 31 real-world concurrency attacks, including privilege escalations, hijacking code executions, and bypassing security checks. We found that compared to concurrency bugs' traditional consequences (e.g., program crashes), concurrency attacks' consequences are often implicit, extremely hard to be observed and diagnosed by program developers. Moreover, in addition to bug-inducing inputs, extra subtle inputs are often needed to trigger the attacks. These subtle features make existing tools ineffective to detect concurrency attacks. To tackle this problem, we present OWL, the first practical tool that models general concurrency attacks' implicit consequences and automatically detects them. We implemented OWL in Linux and successfully detected five new concurrency attacks, including three confirmed and fixed by developers, and two exploited from previously known and well-studied concurrency bugs. OWL has also detected seven known concurrency attacks. Our evaluation shows that OWL eliminates 94.1% of the reports generated by existing concurrency bug detectors as false positive, greatly reducing developers' efforts on diagnosis. All OWL source code, concurrency attack exploit scripts, and results are available on github.com/hku-systems/owl.
2017-05-16
Koskinen, Eric, Yang, Junfeng.  2016.  Reducing Crash Recoverability to Reachability. Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. :97–108.

Software applications run on a variety of platforms (filesystems, virtual slices, mobile hardware, etc.) that do not provide 100% uptime. As such, these applications may crash at any unfortunate moment losing volatile data and, when re-launched, they must be able to correctly recover from potentially inconsistent states left on persistent storage. From a verification perspective, crash recovery bugs can be particularly frustrating because, even when it has been formally proved for a program that it satisfies a property, the proof is foiled by these external events that crash and restart the program. In this paper we first provide a hierarchical formal model of what it means for a program to be crash recoverable. Our model captures the recoverability of many real world programs, including those in our evaluation which use sophisticated recovery algorithms such as shadow paging and write-ahead logging. Next, we introduce a novel technique capable of automatically proving that a program correctly recovers from a crash via a reduction to reachability. Our technique takes an input control-flow automaton and transforms it into an encoding that blends the capture of snapshots of pre-crash states into a symbolic search for a proof that recovery terminates and every recovered execution simulates some crash-free execution. Our encoding is designed to enable one to apply existing abstraction techniques in order to do the work that is necessary to prove recoverability. We have implemented our technique in a tool called Eleven82, capable of analyzing C programs to detect recoverability bugs or prove their absence. We have applied our tool to benchmark examples drawn from industrial file systems and databases, including GDBM, LevelDB, LMDB, PostgreSQL, SQLite, VMware and ZooKeeper. Within minutes, our tool is able to discover bugs or prove that these fragments are crash recoverable.