Biblio

Filters: Author is Kaiser, Gail  [Clear All Filters]
2022-02-07
Singh, Shirish, Kaiser, Gail.  2021.  Metamorphic Detection of Repackaged Malware. 2021 IEEE/ACM 6th International Workshop on Metamorphic Testing (MET). :9–16.
Machine learning-based malware detection systems are often vulnerable to evasion attacks, in which a malware developer manipulates their malicious software such that it is misclassified as benign. Such software hides some properties of the real class or adopts some properties of a different class by applying small perturbations. A special case of evasive malware hides by repackaging a bonafide benign mobile app to contain malware in addition to the original functionality of the app, thus retaining most of the benign properties of the original app. We present a novel malware detection system based on metamorphic testing principles that can detect such benign-seeming malware apps. We apply metamorphic testing to the feature representation of the mobile app, rather than to the app itself. That is, the source input is the original feature vector for the app and the derived input is that vector with selected features removed. If the app was originally classified benign, and is indeed benign, the output for the source and derived inputs should be the same class, i.e., benign, but if they differ, then the app is exposed as (likely) malware. Malware apps originally classified as malware should retain that classification, since only features prevalent in benign apps are removed. This approach enables the machine learning model to classify repackaged malware with reasonably few false negatives and false positives. Our training pipeline is simpler than many existing ML-based malware detection methods, as the network is trained end-to-end to jointly learn appropriate features and to perform classification. We pre-trained our classifier model on 3 million apps collected from the widely-used AndroZoo dataset.1 We perform an extensive study on other publicly available datasets to show our approach's effectiveness in detecting repackaged malware with more than 94% accuracy, 0.98 precision, 0.95 recall, and 0.96 F1 score.
2019-06-10
Su, Fang-Hsiang, Bell, Jonathan, Kaiser, Gail, Ray, Baishakhi.  2018.  Obfuscation Resilient Search Through Executable Classification. Proceedings of the 2Nd ACM SIGPLAN International Workshop on Machine Learning and Programming Languages. :20-30.

Android applications are usually obfuscated before release, making it difficult to analyze them for malware presence or intellectual property violations. Obfuscators might hide the true intent of code by renaming variables and/or modifying program structures. It is challenging to search for executables relevant to an obfuscated application for developers to analyze efficiently. Prior approaches toward obfuscation resilient search have relied on certain structural parts of apps remaining as landmarks, un-touched by obfuscation. For instance, some prior approaches have assumed that the structural relationships between identifiers are not broken by obfuscators; others have assumed that control flow graphs maintain their structures. Both approaches can be easily defeated by a motivated obfuscator. We present a new approach, MACNETO, to search for programs relevant to obfuscated executables leveraging deep learning and principal components on instructions. MACNETO makes few assumptions about the kinds of modifications that an obfuscator might perform. We show that it has high search precision for executables obfuscated by a state-of-the-art obfuscator that changes control flow. Further, we also demonstrate the potential of MACNETO to help developers understand executables, where MACNETO infers keywords (which are from relevant un-obfuscated programs) for obfuscated executables.

2017-05-17
Su, Fang-Hsiang, Bell, Jonathan, Harvey, Kenneth, Sethumadhavan, Simha, Kaiser, Gail, Jebara, Tony.  2016.  Code Relatives: Detecting Similarly Behaving Software. Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering. :702–714.

Detecting “similar code” is useful for many software engineering tasks. Current tools can help detect code with statically similar syntactic and–or semantic features (code clones) and with dynamically similar functional input/output (simions). Unfortunately, some code fragments that behave similarly at the finer granularity of their execution traces may be ignored. In this paper, we propose the term “code relatives” to refer to code with similar execution behavior. We define code relatives and then present DyCLINK, our approach to detecting code relatives within and across codebases. DyCLINK records instruction-level traces from sample executions, organizes the traces into instruction-level dynamic dependence graphs, and employs our specialized subgraph matching algorithm to efficiently compare the executions of candidate code relatives. In our experiments, DyCLINK analyzed 422+ million prospective subgraph matches in only 43 minutes. We compared DyCLINK to one static code clone detector from the community and to our implementation of a dynamic simion detector. The results show that DyCLINK effectively detects code relatives with a reasonable analysis time.

2018-05-23