Biblio

Filters: Author is Saltaformaggio, Brendan  [Clear All Filters]
2017-08-18
Pei, Kexin, Gu, Zhongshu, Saltaformaggio, Brendan, Ma, Shiqing, Wang, Fei, Zhang, Zhiwei, Si, Luo, Zhang, Xiangyu, Xu, Dongyan.  2016.  HERCULE: Attack Story Reconstruction via Community Discovery on Correlated Log Graph. Proceedings of the 32Nd Annual Conference on Computer Security Applications. :583–595.

Advanced cyber attacks consist of multiple stages aimed at being stealthy and elusive. Such attack patterns leave their footprints spatio-temporally dispersed across many different logs in victim machines. However, existing log-mining intrusion analysis systems typically target only a single type of log to discover evidence of an attack and therefore fail to exploit fundamental inter-log connections. The output of such single-log analysis can hardly reveal the complete attack story for complex, multi-stage attacks. Additionally, some existing approaches require heavyweight system instrumentation, which makes them impractical to deploy in real production environments. To address these problems, we present HERCULE, an automated multi-stage log-based intrusion analysis system. Inspired by graph analytics research in social network analysis, we model multi-stage intrusion analysis as a community discovery problem. HERCULE builds multi-dimensional weighted graphs by correlating log entries across multiple lightweight logs that are readily available on commodity systems. From these, HERCULE discovers any "attack communities" embedded within the graphs. Our evaluation with 15 well known APT attack families demonstrates that HERCULE can reconstruct attack behaviors from a spectrum of cyber attacks that involve multiple stages with high accuracy and low false positive rates.

2017-05-17
Kwon, Yonghwi, Kim, Dohyeong, Sumner, William Nick, Kim, Kyungtae, Saltaformaggio, Brendan, Zhang, Xiangyu, Xu, Dongyan.  2016.  LDX: Causality Inference by Lightweight Dual Execution. Proceedings of the Twenty-First International Conference on Architectural Support for Programming Languages and Operating Systems. :503–515.

Causality inference, such as dynamic taint anslysis, has many applications (e.g., information leak detection). It determines whether an event e is causally dependent on a preceding event c during execution. We develop a new causality inference engine LDX. Given an execution, it spawns a slave execution, in which it mutates c and observes whether any change is induced at e. To preclude non-determinism, LDX couples the executions by sharing syscall outcomes. To handle path differences induced by the perturbation, we develop a novel on-the-fly execution alignment scheme that maintains a counter to reflect the progress of execution. The scheme relies on program analysis and compiler transformation. LDX can effectively detect information leak and security attacks with an average overhead of 6.08% while running the master and the slave concurrently on separate CPUs, much lower than existing systems that require instruction level monitoring. Furthermore, it has much better accuracy in causality inference.