Biblio

Filters: Author is Chen, Chih-Wei  [Clear All Filters]
2023-08-18
Lo, Pei-Yu, Chen, Chi-Wei, Hsu, Wei-Ting, Chen, Chih-Wei, Tien, Chin-Wei, Kuo, Sy-Yen.  2022.  Semi-supervised Trojan Nets Classification Using Anomaly Detection Based on SCOAP Features. 2022 IEEE International Symposium on Circuits and Systems (ISCAS). :2423—2427.
Recently, hardware Trojan has become a serious security concern in the integrated circuit (IC) industry. Due to the globalization of semiconductor design and fabrication processes, ICs are highly vulnerable to hardware Trojan insertion by malicious third-party vendors. Therefore, the development of effective hardware Trojan detection techniques is necessary. Testability measures have been proven to be efficient features for Trojan nets classification. However, most of the existing machine-learning-based techniques use supervised learning methods, which involve time-consuming training processes, need to deal with the class imbalance problem, and are not pragmatic in real-world situations. Furthermore, no works have explored the use of anomaly detection for hardware Trojan detection tasks. This paper proposes a semi-supervised hardware Trojan detection method at the gate level using anomaly detection. We ameliorate the existing computation of the Sandia Controllability/Observability Analysis Program (SCOAP) values by considering all types of D flip-flops and adopt semi-supervised anomaly detection techniques to detect Trojan nets. Finally, a novel topology-based location analysis is utilized to improve the detection performance. Testing on 17 Trust-Hub Trojan benchmarks, the proposed method achieves an overall 99.47% true positive rate (TPR), 99.99% true negative rate (TNR), and 99.99% accuracy.
2017-05-17
Ke, Yu-Ming, Chen, Chih-Wei, Hsiao, Hsu-Chun, Perrig, Adrian, Sekar, Vyas.  2016.  CICADAS: Congesting the Internet with Coordinated and Decentralized Pulsating Attacks. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. :699–710.

This study stems from the premise that we need to break away from the "reactive" cycle of developing defenses against new DDoS attacks (e.g., amplification) by proactively investigating the potential for new types of DDoS attacks. Our specific focus is on pulsating attacks, a particularly debilitating type that has been hypothesized in the literature. In a pulsating attack, bots coordinate to generate intermittent pulses at target links to significantly reduce the throughput of TCP connections traversing the target. With pulsating attacks, attackers can cause significantly greater damage to legitimate users than traditional link flooding attacks. To date, however, pulsating attacks have been either deemed ineffective or easily defendable for two reasons: (1) they require a central coordinator and can thus be tracked; and (2) they require tight synchronization of pulses, which is difficult even in normal non-congestion scenarios. This paper argues that, in fact, the perceived drawbacks of pulsating attacks are in fact not fundamental. We develop a practical pulsating attack called CICADAS using two key ideas: using both (1) congestion as an implicit signal for decentralized implementation, and (2) a Kalman-filter-based approach to achieve tight synchronization. We validate CICADAS using simulations and wide-area experiments. We also discuss possible countermeasures against this attack.