Biblio

Filters: Author is Zhong, Hao  [Clear All Filters]
2019-11-12
Wei, Shengjun, Zhong, Hao, Shan, Chun, Ye, Lin, Du, Xiaojiang, Guizani, Mohsen.  2018.  Vulnerability Prediction Based on Weighted Software Network for Secure Software Building. 2018 IEEE Global Communications Conference (GLOBECOM). :1-6.

To build a secure communications software, Vulnerability Prediction Models (VPMs) are used to predict vulnerable software modules in the software system before software security testing. At present many software security metrics have been proposed to design a VPM. In this paper, we predict vulnerable classes in a software system by establishing the system's weighted software network. The metrics are obtained from the nodes' attributes in the weighted software network. We design and implement a crawler tool to collect all public security vulnerabilities in Mozilla Firefox. Based on these data, the prediction model is trained and tested. The results show that the VPM based on weighted software network has a good performance in accuracy, precision, and recall. Compared to other studies, it shows that the performance of prediction has been improved greatly in Pr and Re.

2017-05-18
Lin, Ziyi, Zhong, Hao, Chen, Yuting, Zhao, Jianjun.  2016.  LockPeeker: Detecting Latent Locks in Java APIs. Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering. :368–378.

Detecting lock-related defects has long been a hot research topic in software engineering. Many efforts have been spent on detecting such deadlocks in concurrent software systems. However, latent locks may be hidden in application programming interface (API) methods whose source code may not be accessible to developers. Many APIs have latent locks. For example, our study has shown that J2SE alone can have 2,000+ latent locks. As latent locks are less known by developers, they can cause deadlocks that are hard to perceive or diagnose. Meanwhile, the state-of-the-art tools mostly handle API methods as black boxes, and cannot detect deadlocks that involve such latent locks. In this paper, we propose a novel black-box testing approach, called LockPeeker, that reveals latent locks in Java APIs. The essential idea of LockPeeker is that latent locks of a given API method can be revealed by testing the method and summarizing the locking effects during testing execution. We have evaluated LockPeeker on ten real-world Java projects. Our evaluation results show that (1) LockPeeker detects 74.9% of latent locks in API methods, and (2) it enables state-of-the-art tools to detect deadlocks that otherwise cannot be detected.