Biblio
The strength of an anonymity system depends on the number of users. Therefore, User eXperience (UX) and usability of these systems is of critical importance for boosting adoption and use. To this end, we carried out a study with 19 non-expert participants to investigate how users experience routine Web browsing via the Tor Browser, focusing particularly on encountered problems and frustrations. Using a mixed-methods quantitative and qualitative approach to study one week of naturalistic use of the Tor Browser, we uncovered a variety of UX issues, such as broken Web sites, latency, lack of common browsing conveniences, differential treatment of Tor traffic, incorrect geolocation, operational opacity, etc. We applied this insight to suggest a number of UX improvements that could mitigate the issues and reduce user frustration when using the Tor Browser.
Sites for online classified ads selling sex are widely used by human traffickers to support their pernicious business. The sheer quantity of ads makes manual exploration and analysis unscalable. In addition, discerning whether an ad is advertising a trafficked victim or an independent sex worker is a very difficult task. Very little concrete ground truth (i.e., ads definitively known to be posted by a trafficker) exists in this space. In this work, we develop tools and techniques that can be used separately and in conjunction to group sex ads by their true owner (and not the claimed author in the ad). Specifically, we develop a machine learning classifier that uses stylometry to distinguish between ads posted by the same vs. different authors with 90% TPR and 1% FPR. We also design a linking technique that takes advantage of leakages from the Bitcoin mempool, blockchain and sex ad site, to link a subset of sex ads to Bitcoin public wallets and transactions. Finally, we demonstrate via a 4-week proof of concept using Backpage as the sex ad site, how an analyst can use these automated approaches to potentially find human traffickers.
DDoS-for-hire services, also known as booters, have commoditized DDoS attacks and enabled abusive subscribers of these services to cheaply extort, harass and intimidate businesses and people by taking them offline. However, due to the underground nature of these booters, little is known about their underlying technical and business structure. In this paper, we empirically measure many facets of their technical and payment infrastructure. We also perform an analysis of leaked and scraped data from three major booters–-Asylum Stresser, Lizard Stresser and VDO–-which provides us with an in-depth view of their customers and victims. Finally, we conduct a large-scale payment intervention in collaboration with PayPal and evaluate its effectiveness as a deterrent to their operations. Based on our analysis, we show that these booters are responsible for hundreds of thousands of DDoS attacks and identify potentially promising methods to undermine these services by increasing their costs of operation.