Biblio

Filters: Author is Platzer, Andre  [Clear All Filters]
2018-06-17
Platzer, Andre.  2018.  Logical Foundations of Cyber-Physical Systems.

Cyber-physical systems (CPSs) combine cyber capabilities, such as computation or communication, with physical capabilities, such as motion or other physical processes. Cars, aircraft, and robots are prime examples, because they move physically in space in a way that is determined by discrete computerized control algorithms. Designing these algorithms is challenging due to their tight coupling with physical behavior, while it is vital that these algorithms be correct because we rely on them for safety-critical tasks.

2018-08-07
Platzer, Andre.  2017.  Logical Foundations of Cyber-Physical Systems.

Cyber-physical systems (CPSs) combine cyber capabilities, such as computation or communication, with physical capabilities, such as motion or other physical processes. Cars, aircraft, and robots are prime examples, because they move physically in space in a way that is determined by discrete computerized control algorithms. Designing these algorithms is challenging due to their tight coupling with physical behavior, while it is vital that these algorithms be correct because we rely on them for safety-critical tasks.

This textbook teaches undergraduate students the core principles behind CPSs. It shows them how to develop models and controls; identify safety specifications and critical properties; reason rigorously about CPS models; leverage multi-dynamical systems compositionality to tame CPS complexity; identify required control constraints; verify CPS models of appropriate scale in logic; and develop an intuition for operational effects.

The book is supported with homework exercises, lecture videos, and slides.

2015-01-13
Ghorbal, Khalil, Jeannin, Jean-Baptiste, Zawadzki, Erik, Platzer, Andre, Gordon, Geoffrey, Capell, Peter.  2014.   Hybrid theorem proving of aerospace systems: Applications and challenges. Journal of Aerospace Information Systems . 11(10)

Complex software systems are becoming increasingly prevalent in aerospace applications: in particular, to
accomplish critical tasks. Ensuring the safety of these systems is crucial, as they can have subtly different behaviors
under slight variations in operating conditions. This paper advocates the use of formal verification techniques and in
particular theorem proving for hybrid software-intensive systems as a well-founded complementary approach to the
classical aerospace verification and validation techniques, such as testing or simulation. As an illustration of these
techniques, a novel lateral midair collision-avoidance maneuver is studied in an ideal setting, without accounting for
the uncertainties of the physical reality. The challenges that naturally arise when applying such technology to
industrial-scale applications is then detailed, and proposals are given on how to address these issues.