Biblio

Filters: Author is Day, Wei-Yen  [Clear All Filters]
2020-10-12
Chia, Pern Hui, Desfontaines, Damien, Perera, Irippuge Milinda, Simmons-Marengo, Daniel, Li, Chao, Day, Wei-Yen, Wang, Qiushi, Guevara, Miguel.  2019.  KHyperLogLog: Estimating Reidentifiability and Joinability of Large Data at Scale. 2019 IEEE Symposium on Security and Privacy (SP). :350–364.
Understanding the privacy relevant characteristics of data sets, such as reidentifiability and joinability, is crucial for data governance, yet can be difficult for large data sets. While computing the data characteristics by brute force is straightforward, the scale of systems and data collected by large organizations demands an efficient approach. We present KHyperLogLog (KHLL), an algorithm based on approximate counting techniques that can estimate the reidentifiability and joinability risks of very large databases using linear runtime and minimal memory. KHLL enables one to measure reidentifiability of data quantitatively, rather than based on expert judgement or manual reviews. Meanwhile, joinability analysis using KHLL helps ensure the separation of pseudonymous and identified data sets. We describe how organizations can use KHLL to improve protection of user privacy. The efficiency of KHLL allows one to schedule periodic analyses that detect any deviations from the expected risks over time as a regression test for privacy. We validate the performance and accuracy of KHLL through experiments using proprietary and publicly available data sets.
2017-05-22
Day, Wei-Yen, Li, Ninghui, Lyu, Min.  2016.  Publishing Graph Degree Distribution with Node Differential Privacy. Proceedings of the 2016 International Conference on Management of Data. :123–138.

Graph data publishing under node-differential privacy (node-DP) is challenging due to the huge sensitivity of queries. However, since a node in graph data oftentimes represents a person, node-DP is necessary to achieve personal data protection. In this paper, we investigate the problem of publishing the degree distribution of a graph under node-DP by exploring the projection approach to reduce the sensitivity. We propose two approaches based on aggregation and cumulative histogram to publish the degree distribution. The experiments demonstrate that our approaches greatly reduce the error of approximating the true degree distribution and have significant improvement over existing works. We also present the introspective analysis for understanding the factors of publishing the degree distribution with node-DP.