Biblio

Filters: Author is Rabin, Tal  [Clear All Filters]
2017-07-24
Kolesnikov, Vladimir, Krawczyk, Hugo, Lindell, Yehuda, Malozemoff, Alex, Rabin, Tal.  2016.  Attribute-based Key Exchange with General Policies. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :1451–1463.

Attribute-based methods provide authorization to parties based on whether their set of attributes (e.g., age, organization, etc.) fulfills a policy. In attribute-based encryption (ABE), authorized parties can decrypt, and in attribute-based credentials (ABCs), authorized parties can authenticate themselves. In this paper, we combine elements of ABE and ABCs together with garbled circuits to construct attribute-based key exchange (ABKE). Our focus is on an interactive solution involving a client that holds a certificate (issued by an authority) vouching for that client's attributes and a server that holds a policy computable on such a set of attributes. The goal is for the server to establish a shared key with the client but only if the client's certified attributes satisfy the policy. Our solution enjoys strong privacy guarantees for both the client and the server, including attribute privacy and unlinkability of client sessions. Our main contribution is a construction of ABKE for arbitrary circuits with high (concrete) efficiency. Specifically, we support general policies expressible as boolean circuits computed on a set of attributes. Even for policies containing hundreds of thousands of gates the performance cost is dominated by two pairing computations per policy input. Put another way, for a similar cost to prior ABE/ABC solutions, which can only support small formulas efficiently, we can support vastly richer policies. We implemented our solution and report on its performance. For policies with 100,000 gates and 200 inputs over a realistic network, the server and client spend 957 ms and 176 ms on computation, respectively. When using offline preprocessing and batch signature verification, this drops to only 243 ms and 97 ms.

2017-10-10
Kolesnikov, Vladimir, Krawczyk, Hugo, Lindell, Yehuda, Malozemoff, Alex, Rabin, Tal.  2016.  Attribute-based Key Exchange with General Policies. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :1451–1463.

Attribute-based methods provide authorization to parties based on whether their set of attributes (e.g., age, organization, etc.) fulfills a policy. In attribute-based encryption (ABE), authorized parties can decrypt, and in attribute-based credentials (ABCs), authorized parties can authenticate themselves. In this paper, we combine elements of ABE and ABCs together with garbled circuits to construct attribute-based key exchange (ABKE). Our focus is on an interactive solution involving a client that holds a certificate (issued by an authority) vouching for that client's attributes and a server that holds a policy computable on such a set of attributes. The goal is for the server to establish a shared key with the client but only if the client's certified attributes satisfy the policy. Our solution enjoys strong privacy guarantees for both the client and the server, including attribute privacy and unlinkability of client sessions. Our main contribution is a construction of ABKE for arbitrary circuits with high (concrete) efficiency. Specifically, we support general policies expressible as boolean circuits computed on a set of attributes. Even for policies containing hundreds of thousands of gates the performance cost is dominated by two pairing computations per policy input. Put another way, for a similar cost to prior ABE/ABC solutions, which can only support small formulas efficiently, we can support vastly richer policies. We implemented our solution and report on its performance. For policies with 100,000 gates and 200 inputs over a realistic network, the server and client spend 957 ms and 176 ms on computation, respectively. When using offline preprocessing and batch signature verification, this drops to only 243 ms and 97 ms.

2017-05-22
Halevi, Shai, Ishai, Yuval, Jain, Abhishek, Kushilevitz, Eyal, Rabin, Tal.  2016.  Secure Multiparty Computation with General Interaction Patterns. Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science. :157–168.

We present a unified framework for studying secure multiparty computation (MPC) with arbitrarily restricted interaction patterns such as a chain, a star, a directed tree, or a directed graph. Our study generalizes both standard MPC and recent models for MPC with specific restricted interaction patterns, such as those studied by Halevi et al. (Crypto 2011), Goldwasser et al. (Eurocrypt 2014), and Beimel et al. (Crypto 2014). Since restricted interaction patterns cannot always yield full security for MPC, we start by formalizing the notion of "best possible security" for any interaction pattern. We then obtain the following main results: Completeness theorem. We prove that the star interaction pattern is complete for the problem of MPC with general interaction patterns. Positive results. We present both information-theoretic and computationally secure protocols for computing arbitrary functions with general interaction patterns. We also present more efficient protocols for computing symmetric functions, both in the computational and in the information-theoretic setting. Our computationally secure protocols for general functions necessarily rely on indistinguishability obfuscation while the ones for computing symmetric functions make simple use of multilinear maps. Negative results. We show that, in many cases, the complexity of our information-theoretic protocols is essentially the best that can be achieved. All of our protocols rely on a correlated randomness setup, which is necessary in our setting (for computing general functions). In the computational case, we also present a generic procedure to make any correlated randomness setup reusable, in the common random string model. Although most of our information-theoretic protocols have exponential complexity, they may be practical for functions on small domains (e.g., f0; 1g20), where they are concretely faster than their computational counterparts.