Biblio

Filters: Author is Wang, Haining  [Clear All Filters]
2022-06-06
Li, Qiang, Song, Jinke, Tan, Dawei, Wang, Haining, Liu, Jiqiang.  2021.  PDGraph: A Large-Scale Empirical Study on Project Dependency of Security Vulnerabilities. 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :161–173.
The reuse of libraries in software development has become prevalent for improving development efficiency and software quality. However, security vulnerabilities of reused libraries propagated through software project dependency pose a severe security threat, but they have not yet been well studied. In this paper, we present the first large-scale empirical study of project dependencies with respect to security vulnerabilities. We developed PDGraph, an innovative approach for analyzing publicly known security vulnerabilities among numerous project dependencies, which provides a new perspective for assessing security risks in the wild. As a large-scale software collection in dependency, we find 337,415 projects and 1,385,338 dependency relations. In particular, PDGraph generates a project dependency graph, where each node is a project, and each edge indicates a dependency relationship. We conducted experiments to validate the efficacy of PDGraph and characterized its features for security analysis. We revealed that 1,014 projects have publicly disclosed vulnerabilities, and more than 67,806 projects are directly dependent on them. Among these, 42,441 projects still manifest 67,581 insecure dependency relationships, indicating that they are built on vulnerable versions of reused libraries even though their vulnerabilities are publicly known. During our eight-month observation period, only 1,266 insecure edges were fixed, and corresponding vulnerable libraries were updated to secure versions. Furthermore, we uncovered four underlying dependency risks that can significantly reduce the difficulty of compromising systems. We conducted a quantitative analysis of dependency risks on the PDGraph.
2019-12-17
Liu, Daiping, Zhang, Mingwei, Wang, Haining.  2018.  A Robust and Efficient Defense Against Use-after-Free Exploits via Concurrent Pointer Sweeping. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. :1635-1648.
Applications in C/C++ are notoriously prone to memory corruptions. With significant research efforts devoted to this area of study, the security threats posed by previously popular vulnerabilities, such as stack and heap overflows, are not as serious as before. Instead, we have seen the meteoric rise of attacks exploiting use-after-free (UaF) vulnerabilities in recent years, which root in pointers pointing to freed memory (i.e., dangling pointers). Although various approaches have been proposed to harden software against UaF, none of them can achieve robustness and efficiency at the same time. In this paper, we present a novel defense called pSweeper to robustly protect against UaF exploits with low overhead, and pinpoint the root-causes of UaF vulnerabilities with one safe crash. The success of pSweeper lies in its two unique and innovative design ideas, concurrent pointer sweeping (CPW) and object origin tracking (OOT). CPW exploits the increasingly available multi-cores on modern PCs and outsources the heavyweight security checks and enforcement to dedicated threads that can run on spare cores. Specifically, CPW iteratively sweeps all live pointers in a concurrent thread to find dangling pointers. This design is quite different from previous work that requires to track every pointer propagation to maintain accurate point-to relationship between pointers and objects. OOT can help to pinpoint the root-causes of UaF by informing developers of how a dangling pointer is created, i.e., how the problematic object is allocated and freed. We implement a prototype of pSweeper and validate its efficacy in real scenarios. Our experimental results show that pSweeper is effective in defeating real-world UaF exploits and efficient when deployed in production runs.
2017-05-22
Liu, Daiping, Hao, Shuai, Wang, Haining.  2016.  All Your DNS Records Point to Us: Understanding the Security Threats of Dangling DNS Records. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :1414–1425.

In a dangling DNS record (Dare), the resources pointed to by the DNS record are invalid, but the record itself has not yet been purged from DNS. In this paper, we shed light on a largely overlooked threat in DNS posed by dangling DNS records. Our work reveals that Dare can be easily manipulated by adversaries for domain hijacking. In particular, we identify three attack vectors that an adversary can harness to exploit Dares. In a large-scale measurement study, we uncover 467 exploitable Dares in 277 Alexa top 10,000 domains and 52 edu zones, showing that Dare is a real, prevalent threat. By exploiting these Dares, an adversary can take full control of the (sub)domains and can even have them signed with a Certificate Authority (CA). It is evident that the underlying cause of exploitable Dares is the lack of authenticity checking for the resources to which that DNS record points. We then propose three defense mechanisms to effectively mitigate Dares with little human effort.

2017-05-30
Xu, Zhang, Wu, Zhenyu, Li, Zhichun, Jee, Kangkook, Rhee, Junghwan, Xiao, Xusheng, Xu, Fengyuan, Wang, Haining, Jiang, Guofei.  2016.  High Fidelity Data Reduction for Big Data Security Dependency Analyses. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :504–516.

Intrusive multi-step attacks, such as Advanced Persistent Threat (APT) attacks, have plagued enterprises with significant financial losses and are the top reason for enterprises to increase their security budgets. Since these attacks are sophisticated and stealthy, they can remain undetected for years if individual steps are buried in background "noise." Thus, enterprises are seeking solutions to "connect the suspicious dots" across multiple activities. This requires ubiquitous system auditing for long periods of time, which in turn causes overwhelmingly large amount of system audit events. Given a limited system budget, how to efficiently handle ever-increasing system audit logs is a great challenge. This paper proposes a new approach that exploits the dependency among system events to reduce the number of log entries while still supporting high-quality forensic analysis. In particular, we first propose an aggregation algorithm that preserves the dependency of events during data reduction to ensure the high quality of forensic analysis. Then we propose an aggressive reduction algorithm and exploit domain knowledge for further data reduction. To validate the efficacy of our proposed approach, we conduct a comprehensive evaluation on real-world auditing systems using log traces of more than one month. Our evaluation results demonstrate that our approach can significantly reduce the size of system logs and improve the efficiency of forensic analysis without losing accuracy.