Biblio
We address the known problem of detecting a previous compression in JPEG images, focusing on the challenging case of high and very high quality factors (textgreater= 90) as well as repeated compression with identical or nearly identical quality factors. We first revisit the approaches based on Benford–Fourier analysis in the DCT domain and block convergence analysis in the spatial domain. Both were originally conceived for specific scenarios. Leveraging decision tree theory, we design a combined approach complementing the discriminatory capabilities. We obtain a set of novel detectors targeted to high quality grayscale JPEG images.
Event discovery from single pictures is a challenging problem that has raised significant interest in the last decade. During this time, a number of interesting solutions have been proposed to tackle event discovery in still images. However, a large scale benchmarking image dataset for the evaluation and comparison of event discovery algorithms from single images is still lagging behind. To this aim, in this paper we provide a large-scale properly annotated and balanced dataset of 490,000 images, covering every aspect of 14 different types of social events, selected among the most shared ones in the social network. Such a large scale collection of event-related images is intended to become a powerful support tool for the research community in multimedia analysis by providing a common benchmark for training, testing, validation and comparison of existing and novel algorithms. In this paper, we provide a detailed description of how the dataset is collected, organized and how it can be beneficial for the researchers in the multimedia analysis domain. Moreover, a deep learning based approach is introduced into event discovery from single images as one of the possible applications of this dataset with a belief that deep learning can prove to be a breakthrough also in this research area. By providing this dataset, we hope to gather research community in the multimedia and signal processing domains to advance this application.