Biblio

Filters: Author is Härtig, Hermann  [Clear All Filters]
2018-05-09
Lamowski, Benjamin, Weinhold, Carsten, Lackorzynski, Adam, Härtig, Hermann.  2017.  Sandcrust: Automatic Sandboxing of Unsafe Components in Rust. Proceedings of the 9th Workshop on Programming Languages and Operating Systems. :51–57.

System-level development has been dominated by traditional programming languages such as C and C++ for decades. These languages are inherently unsafe regarding memory management. Even experienced developers make mistakes that open up security holes or compromise the safety properties of software. The Rust programming language is targeted at the systems domain and aims to eliminate memory-related programming errors by enforcing a strict memory model at the language and compiler level. Unfortunately, these compile-time guarantees no longer hold when a Rust program is linked against a library written in unsafe C, which is commonly required for functionality where an implementation in Rust is not yet available. In this paper, we present Sandcrust, an easy-to-use sand-boxing solution for isolating code and data of a C library in a separate process. This isolation protects the Rust-based main program from any memory corruption caused by bugs in the unsafe library, which would otherwise invalidate the memory safety guarantees of Rust. Sandcrust is based on the Rust macro system and requires no modification to the compiler or runtime, but only straightforward annotation of functions that call the library's API.

2017-05-30
Asmussen, Nils, Völp, Marcus, Nöthen, Benedikt, Härtig, Hermann, Fettweis, Gerhard.  2016.  M3: A Hardware/Operating-System Co-Design to Tame Heterogeneous Manycores. Proceedings of the Twenty-First International Conference on Architectural Support for Programming Languages and Operating Systems. :189–203.

In the last decade, the number of available cores increased and heterogeneity grew. In this work, we ask the question whether the design of the current operating systems (OSes) is still appropriate if these trends continue and lead to abundantly available but heterogeneous cores, or whether it forces a fundamental rethinking of how systems are designed. We argue that: 1. hiding heterogeneity behind a common hardware interface unifies, to a large extent, the control and coordination of cores and accelerators in the OS, 2. isolating at the network-on-chip rather than with processor features (like privileged mode, memory management unit, ...), allows running untrusted code on arbitrary cores, and 3. providing OS services via protocols over the network-on-chip, instead of via system calls, makes them accessible to arbitrary types of cores as well. In summary, this turns accelerators into first-class citizens and enables a single and convenient programming environment for all cores without the need to trust any application. In this paper, we introduce network-on-chip-level isolation, present the design of our microkernel-based OS, M3, and the common hardware interface, and evaluate the performance of our prototype in comparison to Linux. A bit surprising, without using accelerators, M3 outperforms Linux in some application-level benchmarks by more than a factor of five.