Biblio

Filters: Author is Hu, Chunqiang  [Clear All Filters]
2020-09-28
Li, Wei, Hu, Chunqiang, Song, Tianyi, Yu, Jiguo, Xing, Xiaoshuang, Cai, Zhipeng.  2018.  Privacy-Preserving Data Collection in Context-Aware Applications. 2018 IEEE Symposium on Privacy-Aware Computing (PAC). :75–85.
Thanks to the development and popularity of context-aware applications, the quality of users' life has been improved through a wide variety of customized services. Meanwhile, users are suffering severe risk of privacy leakage and their privacy concerns are growing over time. To tackle the contradiction between the serious privacy issues and the growing privacy concerns in context-aware applications, in this paper, we propose a privacy-preserving data collection scheme by incorporating the complicated interactions among user, attacker, and service provider into a three-antithetic-party game. Under such a novel game model, we identify and rigorously prove the best strategies of the three parties and the equilibriums of the games. Furthermore, we evaluate the performance of our proposed data collection game by performing extensive numerical experiments, confirming that the user's data privacy can be effective preserved.
2017-06-05
Hu, Chunqiang, Li, Ruinian, Li, Wei, Yu, Jiguo, Tian, Zhi, Bie, Rongfang.  2016.  Efficient Privacy-preserving Schemes for Dot-product Computation in Mobile Computing. Proceedings of the 1st ACM Workshop on Privacy-Aware Mobile Computing. :51–59.

Many applications of mobile computing require the computation of dot-product of two vectors. For examples, the dot-product of an individual's genome data and the gene biomarkers of a health center can help detect diseases in m-Health, and that of the interests of two persons can facilitate friend discovery in mobile social networks. Nevertheless, exposing the inputs of dot-product computation discloses sensitive information about the two participants, leading to severe privacy violations. In this paper, we tackle the problem of privacy-preserving dot-product computation targeting mobile computing applications in which secure channels are hardly established, and the computational efficiency is highly desirable. We first propose two basic schemes and then present the corresponding advanced versions to improve efficiency and enhance privacy-protection strength. Furthermore, we theoretically prove that our proposed schemes can simultaneously achieve privacy-preservation, non-repudiation, and accountability. Our numerical results verify the performance of the proposed schemes in terms of communication and computational overheads.