Fan, Wenjun, Hong, Hsiang-Jen, Wuthier, Simeon, Zhou, Xiaobo, Bai, Yan, Chang, Sang-Yoon.
2021.
Security Analyses of Misbehavior Tracking in Bitcoin Network. 2021 IEEE International Conference on Blockchain and Cryptocurrency (ICBC). :1–3.
Because Bitcoin P2P networking is permissionless by the application requirement, it is vulnerable against networking threats based on identity/credential manipulations such as Sybil and spoofing attacks. The current Bitcoin implementation keeps track of its peer's networking misbehaviors through ban score. In this paper, we investigate the security problems of the ban-score mechanism and discover that the ban score is not only ineffective against the Bitcoin Message-based DoS attacks but also vulnerable to a Defamation attack. In the Defamation attack, the network adversary can exploit the ban-score mechanism to defame innocent peers.
Fan, Wenjun, Chang, Sang-Yoon, Zhou, Xiaobo, Xu, Shouhuai.
2021.
ConMan: A Connection Manipulation-based Attack Against Bitcoin Networking. 2021 IEEE Conference on Communications and Network Security (CNS). :101–109.
Bitcoin is a representative cryptocurrency system using a permissionless peer-to-peer (P2P) network as its communication infrastructure. A number of attacks against Bitcoin have been discovered over the past years, including the Eclipse and EREBUS Attacks. In this paper, we present a new attack against Bitcoin’s P2P networking, dubbed ConMan because it leverages connection manipulation. ConMan achieves the same effect as the Eclipse and EREBUS Attacks in isolating a target (i.e., victim) node from the rest of the Bitcoin network. However, ConMan is different from these attacks because it is an active and deterministic attack, and is more effective and efficient. We validate ConMan through proof-of-concept exploitation in an environment that is coupled with real-world Bitcoin node functions. Experimental results show that ConMan only needs a few minutes to fully control the peer connections of a target node, which is in sharp contrast to the tens of days that are needed by the Eclipse and EREBUS Attacks. Further, we propose several countermeasures against ConMan. Some of them would be effective but incompatible with the design principles of Bitcoin, while the anomaly detection approach is positively achievable. We disclosed ConMan to the Bitcoin Core team and received their feedback, which confirms ConMan and the proposed countermeasures.