Biblio
Implementing security by design in practice often involves the application of threat modeling to elicit security threats and to aid designers in focusing efforts on the most stringent problems first. Existing threat modeling methodologies are capable of generating lots of threats, yet they lack even basic support to triage these threats, except for relying on the expertise and manual assessment by the threat modeler. Since the essence of creating a secure design is to minimize associated risk (and countermeasure costs), risk analysis approaches offer a very compelling solution to this problem. By combining risk analysis and threat modeling, elicited threats in a design can be enriched with risk analysis information in order to provide support in triaging and prioritizing threats and focusing security efforts on the high-risk threats. It requires the following inputs: the asset values, the strengths of countermeasures, and an attacker model. In his paper, we provide an integrated threat elicitation and risk analysis approach, implemented in a threat modeling tool prototype, and evaluate it using a real-world application, namely the SecureDrop whistleblower submission system. We show that the security measures implemented in SecureDrop indeed correspond to the high-risk threats identified by our approach. Therefore, the risk-based security analysis provides useful guidance on focusing security efforts on the most important problems first.
Internet of Things (IoT) devices offer new sources of contextual information, which can be leveraged by applications to make smart decisions. However, due to the decentralized and heterogeneous nature of such devices - each only having a partial view of their surroundings - there is an inherent risk of uncertain, unreliable and inconsistent observations. This is a serious concern for applications making security related decisions, such as context-aware authentication. We propose and evaluate a middleware for IoT that provides trustworthy context for a collaborative authentication use case. It abstracts a dynamic and distributed fusion scheme that extends the Chair-Varshney (CV) optimal decision fusion rule such that it can be used in a highly dynamic IoT environment. We compare performance and cost trade-offs against regular CV. Experimental evaluation demonstrates that our solution outperforms CV with 10% in a highly dynamic IoT environments, with the ability to detect and mitigate unreliable sensors.
Finding security vulnerabilities in the source code as early as possible is becoming more and more essential. In this respect, vulnerability prediction models have the potential to help the security assurance activities by identifying code locations that deserve the most attention. In this paper, we investigate whether prediction models behave like milk (i.e., they turn with time) or wine (i.e., the improve with time) when used to predict future vulnerabilities. Our findings indicate that the recall values are largely in favor of predictors based on older versions. However, the better recall comes at the price of much higher file inspection ratio values.
Recent computing paradigms like cloud computing and big data have become very appealing to outsource computation and storage, making it easier to realize personalized and patient centric healthcare through real-time analytics on user data. Although these technologies can significantly complement resource constrained mobile and wearable devices to store and process personal health information, privacy concerns are keeping patients from reaping the full benefits. In this paper, we present and evaluate a practical smart-watch based lifelog application for diabetics that leverages the cloud and homomorphic encryption for caregivers to analyze blood glucose, insulin values, and other parameters in a privacy friendly manner to ensure confidentiality such that even a curious cloud service provider remains oblivious of sensitive health data.
With the increasingly pervasive role of software in society, security is becoming an important quality concern, emphasizing security by design, but it requires intensive specialization. Security in families of systems is even harder, as diverse variants of security solutions must be considered, with even different security goals per product. Furthermore, security is not a static object but a moving target, adding variability. For this, an approach to systematically address security concerns in software product lines is needed. It should consider security separate from other variability dimensions. The main challenges to realize this are: (i) expressing security and its variability, (ii) selecting the right solution, (iii) properly instantiating a solution, and (iv) verifying and validating it. In this paper, we present our research agenda towards addressing the aforementioned challenges.