Biblio

Filters: Author is Li, Feifei  [Clear All Filters]
2020-09-14
Ma, Zhuo, Liu, Yang, Liu, Ximeng, Ma, Jianfeng, Li, Feifei.  2019.  Privacy-Preserving Outsourced Speech Recognition for Smart IoT Devices. IEEE Internet of Things Journal. 6:8406–8420.
Most of the current intelligent Internet of Things (IoT) products take neural network-based speech recognition as the standard human-machine interaction interface. However, the traditional speech recognition frameworks for smart IoT devices always collect and transmit voice information in the form of plaintext, which may cause the disclosure of user privacy. Due to the wide utilization of speech features as biometric authentication, the privacy leakage can cause immeasurable losses to personal property and privacy. Therefore, in this paper, we propose an outsourced privacy-preserving speech recognition framework (OPSR) for smart IoT devices in the long short-term memory (LSTM) neural network and edge computing. In the framework, a series of additive secret sharing-based interactive protocols between two edge servers are designed to achieve lightweight outsourced computation. And based on the protocols, we implement the neural network training process of LSTM for intelligent IoT device voice control. Finally, combined with the universal composability theory and experiment results, we theoretically prove the correctness and security of our framework.
2017-06-27
Chang, Zhao, Zou, Lei, Li, Feifei.  2016.  Privacy Preserving Subgraph Matching on Large Graphs in Cloud. Proceedings of the 2016 International Conference on Management of Data. :199–213.

The wide presence of large graph data and the increasing popularity of storing data in the cloud drive the needs for graph query processing on a remote cloud. But a fundamental challenge is to process user queries without compromising sensitive information. This work focuses on privacy preserving subgraph matching in a cloud server. The goal is to minimize the overhead on both cloud and client sides for subgraph matching, without compromising users' sensitive information. To that end, we transform an original graph \$G\$ into a privacy preserving graph Gk, which meets the requirement of an existing privacy model known as k-automorphism. By making use of the symmetry in a k-automorphic graph, a subgraph matching query can be efficiently answered using a graph Go, a small subset of Gk. This approach saves both space and query cost in the cloud server. We also anonymize the query graphs to protect their label information using label generalization technique. To reduce the search space for a subgraph matching query, we propose a cost model to select the more effective label combinations. The effectiveness and efficiency of our method are demonstrated through extensive experimental results on real datasets.