Biblio

Filters: Author is Su, Dong  [Clear All Filters]
2020-01-21
Gunasinghe, Hasini, Kundu, Ashish, Bertino, Elisa, Krawczyk, Hugo, Chari, Suresh, Singh, Kapil, Su, Dong.  2019.  PrivIdEx: Privacy Preserving and Secure Exchange of Digital Identity Assets.. The World Wide Web Conference. :594–604.
User's digital identity information has privacy and security requirements. Privacy requirements include confidentiality of the identity information itself, anonymity of those who verify and consume a user's identity information and unlinkability of online transactions which involve a user's identity. Security requirements include correctness, ownership assurance and prevention of counterfeits of a user's identity information. Such privacy and security requirements, although conflicting, are critical for identity management systems enabling the exchange of users' identity information between different parties during the execution of online transactions. Addressing all such requirements, without a centralized party managing the identity exchange transactions, raises several challenges. This paper presents a decentralized protocol for privacy preserving exchange of users' identity information addressing such challenges. The proposed protocol leverages advances in blockchain and zero knowledge proof technologies, as the main building blocks. We provide prototype implementations of the main building blocks of the protocol and assess its performance and security.
2017-07-24
Su, Dong, Cao, Jianneng, Li, Ninghui, Bertino, Elisa, Jin, Hongxia.  2016.  Differentially Private K-Means Clustering. Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy. :26–37.

There are two broad approaches for differentially private data analysis. The interactive approach aims at developing customized differentially private algorithms for various data mining tasks. The non-interactive approach aims at developing differentially private algorithms that can output a synopsis of the input dataset, which can then be used to support various data mining tasks. In this paper we study the effectiveness of the two approaches on differentially private k-means clustering. We develop techniques to analyze the empirical error behaviors of the existing interactive and non-interactive approaches. Based on the analysis, we propose an improvement of DPLloyd which is a differentially private version of the Lloyd algorithm. We also propose a non-interactive approach EUGkM which publishes a differentially private synopsis for k-means clustering. Results from extensive and systematic experiments support our analysis and demonstrate the effectiveness of our improvement on DPLloyd and the proposed EUGkM algorithm.