Biblio

Filters: Author is Yan, Jun  [Clear All Filters]
2023-06-02
Liang, Dingyang, Sun, Jianing, Zhang, Yizhi, Yan, Jun.  2022.  Lightweight Neural Network-based Web Fingerprinting Model. 2022 International Conference on Networking and Network Applications (NaNA). :29—34.

Onion Routing is an encrypted communication system developed by the U.S. Naval Laboratory that uses existing Internet equipment to communicate anonymously. Miscreants use this means to conduct illegal transactions in the dark web, posing a security risk to citizens and the country. For this means of anonymous communication, website fingerprinting methods have been used in existing studies. These methods often have high overhead and need to run on devices with high performance, which makes the method inflexible. In this paper, we propose a lightweight method to address the high overhead problem that deep learning website fingerprinting methods generally have, so that the method can be applied on common devices while also ensuring accuracy to a certain extent. The proposed method refers to the structure of Inception net, divides the original larger convolutional kernels into smaller ones, and uses group convolution to reduce the website fingerprinting and computation to a certain extent without causing too much negative impact on the accuracy. The method was experimented on the data set collected by Rimmer et al. to ensure the effectiveness.

2018-05-24
Zheng, Yanan, Wen, Lijie, Wang, Jianmin, Yan, Jun, Ji, Lei.  2017.  Sequence Modeling with Hierarchical Deep Generative Models with Dual Memory. Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. :1369–1378.

Deep Generative Models (DGMs) are able to extract high-level representations from massive unlabeled data and are explainable from a probabilistic perspective. Such characteristics favor sequence modeling tasks. However, it still remains a huge challenge to model sequences with DGMs. Unlike real-valued data that can be directly fed into models, sequence data consist of discrete elements and require being transformed into certain representations first. This leads to the following two challenges. First, high-level features are sensitive to small variations of inputs as well as the way of representing data. Second, the models are more likely to lose long-term information during multiple transformations. In this paper, we propose a Hierarchical Deep Generative Model With Dual Memory to address the two challenges. Furthermore, we provide a method to efficiently perform inference and learning on the model. The proposed model extends basic DGMs with an improved hierarchically organized multi-layer architecture. Besides, our model incorporates memories along dual directions, respectively denoted as broad memory and deep memory. The model is trained end-to-end by optimizing a variational lower bound on data log-likelihood using the improved stochastic variational method. We perform experiments on several tasks with various datasets and obtain excellent results. The results of language modeling show our method significantly outperforms state-of-the-art results in terms of generative performance. Extended experiments including document modeling and sentiment analysis, prove the high-effectiveness of dual memory mechanism and latent representations. Text random generation provides a straightforward perception for advantages of our model.

2017-08-02
Cao, Cong, Yan, Jun, Li, Mengxiang.  2016.  Understanding the Influence and Service Type of Trusted Third Party on Consumers' Online Trust: Evidence from Australian B2C Marketplace. Proceedings of the 18th Annual International Conference on Electronic Commerce: E-Commerce in Smart Connected World. :18:1–18:8.

In this study, the trusted third party (TTP) in Australia's B2C marketplace is studied and the factors influencing consumers' trust behaviour are examined from the perspective of consumers' online trust. Based on the literature review and combined with the development status and background of Australia's e-commerce, underpinned by the Theory of Planned Behaviour (TPB) and a conceptual trust model, this paper expatiates the specific factors and influence mechanism of TTP on consumers' trust behaviour. Also this paper explains two different functions of TTP to solve the online trust problem faced by consumers. Meanwhile, this paper summarizes five different types of services provided by TTPs during the establishment of the trust relationship. Finally, the present study selects 100 B2C enterprises by the simple random sampling method and makes a detailed analysis of their TTPs, to verify the services and functions of the proposed TTP in the trust model. This study is of some significance for comprehending the influence mechanism, functions and services of TTPs on consumers' trust behaviour in the realistic Australian B2C environment.