Biblio

Filters: Author is Uda, Ryuya  [Clear All Filters]
2022-02-07
Kita, Kouhei, Uda, Ryuya.  2021.  Malware Subspecies Detection Method by Suffix Arrays and Machine Learning. 2021 55th Annual Conference on Information Sciences and Systems (CISS). :1–6.
Malware such as metamorphic virus changes its codes and it cannot be detected by pattern matching. Such malware can be detected by surface analysis, dynamic analysis or static analysis. We focused on surface analysis since neither virtual environments nor high level engineering is required. A representative method in surface analysis is n-gram with machine learning. On the other hand, important features are sometimes cut off by n-gram since n is not variable in some existing methods. Hence, scores of malware detection methods are not perfect. Moreover, creating n-gram features takes long time for comparing files. Furthermore, in some n-gram methods, invisible malware can be created when the methods are known to attackers. Therefore, we proposed a new malware subspecies detection method by suffix arrays and machine learning. We evaluated the method with four real malware subspecies families and succeeded to classify them with almost 100% accuracy.
2020-09-28
Akaishi, Sota, Uda, Ryuya.  2019.  Classification of XSS Attacks by Machine Learning with Frequency of Appearance and Co-occurrence. 2019 53rd Annual Conference on Information Sciences and Systems (CISS). :1–6.
Cross site scripting (XSS) attack is one of the attacks on the web. It brings session hijack with HTTP cookies, information collection with fake HTML input form and phishing with dummy sites. As a countermeasure of XSS attack, machine learning has attracted a lot of attention. There are existing researches in which SVM, Random Forest and SCW are used for the detection of the attack. However, in the researches, there are problems that the size of data set is too small or unbalanced, and that preprocessing method for vectorization of strings causes misclassification. The highest accuracy of the classification was 98% in existing researches. Therefore, in this paper, we improved the preprocessing method for vectorization by using word2vec to find the frequency of appearance and co-occurrence of the words in XSS attack scripts. Moreover, we also used a large data set to decrease the deviation of the data. Furthermore, we evaluated the classification results with two procedures. One is an inappropriate procedure which some researchers tend to select by mistake. The other is an appropriate procedure which can be applied to an attack detection filter in the real environment.
2020-09-11
Azakami, Tomoka, Shibata, Chihiro, Uda, Ryuya, Kinoshita, Toshiyuki.  2019.  Creation of Adversarial Examples with Keeping High Visual Performance. 2019 IEEE 2nd International Conference on Information and Computer Technologies (ICICT). :52—56.
The accuracy of the image classification by the convolutional neural network is exceeding the ability of human being and contributes to various fields. However, the improvement of the image recognition technology gives a great blow to security system with an image such as CAPTCHA. In particular, since the character string CAPTCHA has already added distortion and noise in order not to be read by the computer, it becomes a problem that the human readability is lowered. Adversarial examples is a technique to produce an image letting an image classification by the machine learning be wrong intentionally. The best feature of this technique is that when human beings compare the original image with the adversarial examples, they cannot understand the difference on appearance. However, Adversarial examples that is created with conventional FGSM cannot completely misclassify strong nonlinear networks like CNN. Osadchy et al. have researched to apply this adversarial examples to CAPTCHA and attempted to let CNN misclassify them. However, they could not let CNN misclassify character images. In this research, we propose a method to apply FGSM to the character string CAPTCHAs and to let CNN misclassified them.
2018-01-23
Nagano, Yuta, Uda, Ryuya.  2017.  Static Analysis with Paragraph Vector for Malware Detection. Proceedings of the 11th International Conference on Ubiquitous Information Management and Communication. :80:1–80:7.

Malware damages computers and the threat is a serious problem. Malware can be detected by pattern matching method or dynamic heuristic method. However, it is difficult to detect all new malware subspecies perfectly by existing methods. In this paper, we propose a new method which automatically detects new malware subspecies by static analysis of execution files and machine learning. The method can distinguish malware from benignware and it can also classify malware subspecies into malware families. We combine static analysis of execution files with machine learning classifier and natural language processing by machine learning. Information of DLL Import, assembly code and hexdump are acquired by static analysis of execution files of malware and benignware to create feature vectors. Paragraph vectors of information by static analysis of execution files are created by machine learning of PV-DBOW model for natural language processing. Support vector machine and classifier of k-nearest neighbor algorithm are used in our method, and the classifier learns paragraph vectors of information by static analysis. Unknown execution files are classified into malware or benignware by pre-learned SVM. Moreover, malware subspecies are also classified into malware families by pre-learned k-nearest. We evaluate the accuracy of the classification by experiments. We think that new malware subspecies can be effectively detected by our method without existing methods for malware analysis such as generic method and dynamic heuristic method.

2017-10-04
Sawada, Kouta, Uda, Ryuya.  2016.  Effective CAPTCHA with Amodal Completion and Aftereffects. Proceeding IMCOM '16 Proceedings of the 10th International Conference on Ubiquitous Information Management and Communication Article No. 53 .

Accounts on web services are always exposed to the menace of attacks. Especially, a large number of accounts can be used for unfair uses such as stealth marketing or SPAM attacks. Needless to say, acquisition of those accounts and attacks are automatically done by software programs called bots. Therefore, a technology called CAPTCHA is usually used in the acquisition of accounts for web services in order to distinguish human beings from bots. The most popular kind of CAPTCHA methods is text-based CAPTCHA in which distorted alphabets and numbers appear with obstacles or noise. However, it is known that all of text-based CAPTCHA algorithms can be analyzed by computers. In addition, too much distortion or noise prevents human beings from alphabets or numbers. There are other kinds of CAPTCHA methods such as image CAPTCHA and audio CAPTCHA. However, they also have problems in use. As a related work, an effective text-based CAPTCHA algorithm was proposed to which amodal completion is applied. The CAPTCHA provides computers a large amount of calculation cost while amodal completion helps human beings to recognize characters momentarily. On the other hand, momentary recognition is uncomfortable for human beings since extreme concentration is required within ten seconds. Therefore, in this paper, we propose an improved algorithm to which amodal completion and aftereffects are applied. The aftereffects extend time for recognition of characters from a moment to several seconds.

2017-08-02
Nohara, Takumi, Uda, Ryuya.  2016.  Personal Identification by Flick Input Using Self-Organizing Maps with Acceleration Sensor and Gyroscope. Proceedings of the 10th International Conference on Ubiquitous Information Management and Communication. :58:1–58:6.

Screen lock is vulnerable against shoulder surfing since password, personal identification numbers (PIN) and pattern can be seen when smart phones are used in public space although important information is stored in them and they are often used in public space. In this paper, we propose a new method in which passwords are combined with biometrics authentication which cannot be seen by shoulder surfing and difficult to be guessed by brute-force attacks. In our method, the motion of a finger is measured by sensors when a user controls a mobile terminal, and the motion which includes characteristics of the user is registered. In our method, registered characteristics are classified by learning with self-organizing maps. Users are identified by referring the self-organizing maps when they input passwords on mobile terminals.