Biblio

Filters: Author is Majumdar, Suryadipta  [Clear All Filters]
2022-02-24
Paudel, Upakar, Dolan, Andy, Majumdar, Suryadipta, Ray, Indrakshi.  2021.  Context-Aware IoT Device Functionality Extraction from Specifications for Ensuring Consumer Security. 2021 IEEE Conference on Communications and Network Security (CNS). :155–163.
Internet of Thing (IoT) devices are being widely used in smart homes and organizations. An IoT device has some intended purposes, but may also have hidden functionalities. Typically, the device is installed in a home or an organization and the network traffic associated with the device is captured and analyzed to infer high-level functionality to the extent possible. However, such analysis is dynamic in nature, and requires the installation of the device and access to network data which is often hard to get for privacy and confidentiality reasons. We propose an alternative static approach which can infer the functionality of a device from vendor materials using Natural Language Processing (NLP) techniques. Information about IoT device functionality can be used in various applications, one of which is ensuring security in a smart home. We demonstrate how security policies associated with device functionality in a smart home can be formally represented using the NIST Next Generation Access Control (NGAC) model and automatically analyzed using Alloy, which is a formal verification tool. This will provide assurance to the consumer that these devices will be compliant to the home or organizational policy even before they have been purchased.
2020-03-09
Majumdar, Suryadipta, Tabiban, Azadeh, Mohammady, Meisam, Oqaily, Alaa, Jarraya, Yosr, Pourzandi, Makan, Wang, Lingyu, Debbabi, Mourad.  2019.  Multi-Level Proactive Security Auditing for Clouds. 2019 IEEE Conference on Dependable and Secure Computing (DSC). :1–8.
Runtime cloud security auditing plays a vital role in mitigating security concerns in a cloud. However, there currently does not exist a comprehensive solution that can protect a cloud tenant against the threats rendered from the multiple levels (e.g., user, virtual, and physical) of the cloud design. Furthermore, most of the existing solutions suffer from slow response time and require significant manual efforts. Therefore, a simple integration of the existing solutions for different levels is not a practical solution. In this paper, we propose a multilevel proactive security auditing system, which overcomes all the above-mentioned limitations. To this end, our main idea is to automatically build a predictive model based on the dependency relationships between cloud events, proactively verify the security policies related to different levels of a cloud by leveraging this model, and finally enforce those policies on the cloud based on the verification results. Our experiments using both synthetic and real data show the practicality and effectiveness of this solution (e.g., responding in a few milliseconds to verify each level of the cloud).
2020-01-20
Oqaily, Momen, Jarraya, Yosr, Mohammady, Meisam, Majumdar, Suryadipta, Pourzandi, Makan, Wang, Lingyu, Debbabi, Mourad.  2019.  SegGuard: Segmentation-based Anonymization of Network Data in Clouds for Privacy-Preserving Security Auditing. IEEE Transactions on Dependable and Secure Computing. :1–1.
Security auditing allows cloud tenants to verify the compliance of cloud infrastructure with respect to desirable security properties, e.g., whether a tenant's virtual network is properly isolated from other tenants' networks. However, the input to such an auditing task, such as the detailed topology of the underlying cloud infrastructure, typically contains sensitive information which a cloud provider may be reluctant to hand over to a third party auditor. Additionally, auditing results intended for one tenant may inadvertently reveal private information about other tenants, e.g., another tenant's VM is reachable due to a misconfiguration. How to anonymize both the input data and the auditing results in order to prevent such information leakage is a novel challenge that has received little attention. Directly applying most of the existing anonymization techniques to such a context would either lead to insufficient protection or render the data unsuitable for auditing. In this paper, we propose SegGuard, a novel anonymization approach that prevents cross-tenant information leakage through per-tenant encryption, and prevents information leakage to auditors through hiding real input segments among fake ones; in addition, applying property-preserving encryption in an innovative way enables SegGuard to preserve the data utility for auditing while mitigating semantic attacks. We implement SegGuard based on OpenStack, and evaluate its effectiveness and overhead using both synthetic and real data. Our experimental results demonstrate that SegGuard can reduce the information leakage to a negligible level (e.g., less than 1% for an adversary with 50% pre-knowledge) with a practical response time (e.g., 62 seconds to anonymize a cloud infrastructure with 25,000 virtual machines).
2020-05-11
Tabiban, Azadeh, Majumdar, Suryadipta, Wang, Lingyu, Debbabi, Mourad.  2018.  PERMON: An OpenStack Middleware for Runtime Security Policy Enforcement in Clouds. 2018 IEEE Conference on Communications and Network Security (CNS). :1–7.

To ensure the accountability of a cloud environment, security policies may be provided as a set of properties to be enforced by cloud providers. However, due to the sheer size of clouds, it can be challenging to provide timely responses to all the requests coming from cloud users at runtime. In this paper, we design and implement a middleware, PERMON, as a pluggable interface to OpenStack for intercepting and verifying the legitimacy of user requests at runtime, while leveraging our previous work on proactive security verification to improve the efficiency. We describe detailed implementation of the middleware and demonstrate its usefulness through a use case.

2017-08-02
Madi, Taous, Majumdar, Suryadipta, Wang, Yushun, Jarraya, Yosr, Pourzandi, Makan, Wang, Lingyu.  2016.  Auditing Security Compliance of the Virtualized Infrastructure in the Cloud: Application to OpenStack. Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy. :195–206.

Cloud service providers typically adopt the multi-tenancy model to optimize resources usage and achieve the promised cost-effectiveness. Sharing resources between different tenants and the underlying complex technology increase the necessity of transparency and accountability. In this regard, auditing security compliance of the provider's infrastructure against standards, regulations and customers' policies takes on an increasing importance in the cloud to boost the trust between the stakeholders. However, virtualization and scalability make compliance verification challenging. In this work, we propose an automated framework that allows auditing the cloud infrastructure from the structural point of view while focusing on virtualization-related security properties and consistency between multiple control layers. Furthermore, to show the feasibility of our approach, we integrate our auditing system into OpenStack, one of the most used cloud infrastructure management systems. To show the scalability and validity of our framework, we present our experimental results on assessing several properties related to auditing inter-layer consistency, virtual machines co-residence, and virtual resources isolation.

2017-09-26
Madi, Taous, Majumdar, Suryadipta, Wang, Yushun, Jarraya, Yosr, Pourzandi, Makan, Wang, Lingyu.  2016.  Auditing Security Compliance of the Virtualized Infrastructure in the Cloud: Application to OpenStack. Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy. :195–206.

Cloud service providers typically adopt the multi-tenancy model to optimize resources usage and achieve the promised cost-effectiveness. Sharing resources between different tenants and the underlying complex technology increase the necessity of transparency and accountability. In this regard, auditing security compliance of the provider's infrastructure against standards, regulations and customers' policies takes on an increasing importance in the cloud to boost the trust between the stakeholders. However, virtualization and scalability make compliance verification challenging. In this work, we propose an automated framework that allows auditing the cloud infrastructure from the structural point of view while focusing on virtualization-related security properties and consistency between multiple control layers. Furthermore, to show the feasibility of our approach, we integrate our auditing system into OpenStack, one of the most used cloud infrastructure management systems. To show the scalability and validity of our framework, we present our experimental results on assessing several properties related to auditing inter-layer consistency, virtual machines co-residence, and virtual resources isolation.