Biblio

Filters: Author is Mashima, Daisuke  [Clear All Filters]
2023-05-11
Teo, Jia Wei, Gunawan, Sean, Biswas, Partha P., Mashima, Daisuke.  2022.  Evaluating Synthetic Datasets for Training Machine Learning Models to Detect Malicious Commands. 2022 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :315–321.
Electrical substations in power grid act as the critical interface points for the transmission and distribution networks. Over the years, digital technology has been integrated into the substations for remote control and automation. As a result, substations are more prone to cyber attacks and exposed to digital vulnerabilities. One of the notable cyber attack vectors is the malicious command injection, which can lead to shutting down of substations and subsequently power outages as demonstrated in Ukraine Power Plant Attack in 2015. Prevailing measures based on cyber rules (e.g., firewalls and intrusion detection systems) are often inadequate to detect advanced and stealthy attacks that use legitimate-looking measurements or control messages to cause physical damage. Additionally, defenses that use physics-based approaches (e.g., power flow simulation, state estimation, etc.) to detect malicious commands suffer from high latency. Machine learning serves as a potential solution in detecting command injection attacks with high accuracy and low latency. However, sufficient datasets are not readily available to train and evaluate the machine learning models. In this paper, focusing on this particular challenge, we discuss various approaches for the generation of synthetic data that can be used to train the machine learning models. Further, we evaluate the models trained with the synthetic data against attack datasets that simulates malicious commands injections with different levels of sophistication. Our findings show that synthetic data generated with some level of power grid domain knowledge helps train robust machine learning models against different types of attacks.
2017-09-05
Gunathilaka, Prageeth, Mashima, Daisuke, Chen, Binbin.  2016.  SoftGrid: A Software-based Smart Grid Testbed for Evaluating Substation Cybersecurity Solutions. Proceedings of the 2Nd ACM Workshop on Cyber-Physical Systems Security and Privacy. :113–124.

Electrical substations are crucial for power grids. A number of international standards, such as IEC 60870 and 61850, have emerged to enable remote and automated control over substations. However, owing to insufficient security consideration in their design and implementation, the resulting systems could be vulnerable to cyber attacks. As a result, the modernization of a large number of substations dramatically increases the scale of potential damage successful attacks can cause on power grids. To counter such a risk, one promising direction is to design and deploy an additional layer of defense at the substations. However, it remains a challenge to evaluate various substation cybersecurity solutions in a realistic environment. In this paper, we present the design and implementation of SoftGrid, a software-based smart grid testbed for evaluating the effectiveness, performance, and interoperability of various security solutions implemented to protect the remote control interface of substations. We demonstrate the capability and usefulness of SoftGrid through a concrete case study. We plan to open-source SoftGrid to facilitate security research in related areas.