Biblio

Filters: Author is Jadliwala, Murtuza  [Clear All Filters]
2019-01-16
Maiti, Anindya, Heard, Ryan, Sabra, Mohd, Jadliwala, Murtuza.  2018.  Towards Inferring Mechanical Lock Combinations Using Wrist-Wearables As a Side-Channel. Proceedings of the 11th ACM Conference on Security & Privacy in Wireless and Mobile Networks. :111–122.
Wrist-wearables such as smartwatches and fitness bands are equipped with a variety of high-precision sensors that support novel contextual and activity-based applications. The presence of a diverse set of on-board sensors, however, also expose an additional attack surface which, if not adequately protected, could be potentially exploited to leak private user information. In this paper, we investigate the feasibility of a new attack that takes advantage of a wrist-wearable's motion sensors to infer input on mechanical devices typically used to secure physical access, for example, combination locks. We outline an inference framework that attempts to infer a lock's unlock combination from the wrist motion captured by a smartwatch's gyroscope sensor, and uses a probabilistic model to produce a ranked list of likely unlock combinations. We conduct a thorough empirical evaluation of the proposed framework by employing unlocking-related motion data collected from human subject participants in a variety of controlled and realistic settings. Evaluation results from these experiments demonstrate that motion data from wrist-wearables can be effectively employed as a side-channel to significantly reduce the unlock combination search-space of commonly found combination locks, thus compromising the physical security provided by these locks.
2017-09-05
Maiti, Anindya, Armbruster, Oscar, Jadliwala, Murtuza, He, Jibo.  2016.  Smartwatch-Based Keystroke Inference Attacks and Context-Aware Protection Mechanisms. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. :795–806.

Wearable devices, such as smartwatches, are furnished with state-of-the-art sensors that enable a range of context-aware applications. However, malicious applications can misuse these sensors, if access is left unaudited. In this paper, we demonstrate how applications that have access to motion or inertial sensor data on a modern smartwatch can recover text typed on an external QWERTY keyboard. Due to the distinct nature of the perceptible motion sensor data, earlier research efforts on emanation based keystroke inference attacks are not readily applicable in this scenario. The proposed novel attack framework characterizes wrist movements (captured by the inertial sensors of the smartwatch worn on the wrist) observed during typing, based on the relative physical position of keys and the direction of transition between pairs of keys. Eavesdropped keystroke characteristics are then matched to candidate words in a dictionary. Multiple evaluations show that our keystroke inference framework has an alarmingly high classification accuracy and word recovery rate. With the information recovered from the wrist movements perceptible by a smartwatch, we exemplify the risks associated with unaudited access to seemingly innocuous sensors (e.g., accelerometers and gyroscopes) of wearable devices. As part of our efforts towards preventing such side-channel attacks, we also develop and evaluate a novel context-aware protection framework which can be used to automatically disable (or downgrade) access to motion sensors, whenever typing activity is detected.