Biblio

Filters: Author is Litoiu, Marin  [Clear All Filters]
2022-01-12
Weyns, Danny, Schmerl, Bradley, Kishida, Masako, Leva, Alberto, Litoiu, Marin, Ozay, Necmiye, Paterson, Colin, undefined.  2021.  Towards Better Adaptive Systems by Combining MAPE, Control Theory, and Machine Learning. Proceedings of the 16th Symposium on Software Engineering for Adaptive and Self-Managing Systems, Virtual.
Two established approaches to engineer adaptive systems are architecture-based adaptation that uses a Monitor-Analysis-Planning-Executing (MAPE) loop that reasons over architectural models (aka Knowledge) to make adaptation decisions, and control-based adaptation that relies on principles of control theory (CT) to realize adaptation. Recently, we also observe a rapidly growing interest in applying machine learning (ML) to support different adaptation mechanisms. While MAPE and CT have particular characteristics and strengths to be applied independently, in this paper, we are concerned with the question of how these approaches are related with one another and whether combining them and supporting them with ML can produce better adaptive systems. We motivate the combined use of different adaptation approaches using a scenario of a cloud-based enterprise system and illustrate the analysis when combining the different approaches. To conclude, we offer a set of open questions for further research in this interesting area.
2015-04-30
Shtern, Mark, Sandel, Roni, Litoiu, Marin, Bachalo, Chris, Theodorou, Vasileios.  2014.  Towards Mitigation of Low and Slow Application DDoS Attacks. Proceedings of the 2014 IEEE International Conference on Cloud Engineering. :604–609.

Distributed Denial of Service attacks are a growing threat to organizations and, as defense mechanisms are becoming more advanced, hackers are aiming at the application layer. For example, application layer Low and Slow Distributed Denial of Service attacks are becoming a serious issue because, due to low resource consumption, they are hard to detect. In this position paper, we propose a reference architecture that mitigates the Low and Slow Distributed Denial of Service attacks by utilizing Software Defined Infrastructure capabilities. We also propose two concrete architectures based on the reference architecture: a Performance Model-Based and Off-The-Shelf Components based architecture, respectively. We introduce the Shark Tank concept, a cluster under detailed monitoring that has full application capabilities and where suspicious requests are redirected for further filtering.