Biblio

Filters: Author is Laurén, Samuel  [Clear All Filters]
2019-01-31
Laurén, Samuel, Leppänen, Ville.  2018.  Virtual Machine Introspection Based Cloud Monitoring Platform. Proceedings of the 19th International Conference on Computer Systems and Technologies. :104–109.

Virtual Machine Introspection (VMI) is an emerging family of techniques for extracting data from virtual machines without the use of active monitoring probes within the target machines themselves. In VMI based systems, the data is collected at the hypervisor-level by analyzing the state of virtual machines. This has the benefit of making collection harder to detect and block by malware as there is nothing in the machine indicating that monitoring is taking place. In this paper we present Nitro Web, a web-based monitoring system for virtual machines that uses virtual machine introspection for data collection. The platform is capable of detecting and visualizing system call activity taking place within virtual machines in real-time. The secondary purpose of this paper is to offer an introduction to Nitro virtual machine introspection framework that we have been involved in developing. In this paper, we reflect on how Nitro Framework can be used for building applications making use of VMI data.

2017-11-13
Hosseinzadeh, Shohreh, Laurén, Samuel, Leppänen, Ville.  2016.  Security in Container-based Virtualization Through vTPM. Proceedings of the 9th International Conference on Utility and Cloud Computing. :214–219.

Cloud computing is a wide-spread technology that enables the enterprises to provide services to their customers with a lower cost, higher performance, better availability and scalability. However, privacy and security in cloud computing has always been a major challenge to service providers and a concern to its users. Trusted computing has led its way in securing the cloud computing and virtualized environment, during the past decades. In this paper, first we study virtualized trusted platform modules and integration of vTPM in hypervisor-based virtualization. Then we propose two architectural solutions for integrating the vTPM in container-based virtualization model.

2017-09-15
Laurén, Samuel, Rauti, Sampsa, Leppänen, Ville.  2016.  An Interface Diversified Honeypot for Malware Analysis. Proccedings of the 10th European Conference on Software Architecture Workshops. :29:1–29:6.

Defending information systems against advanced attacks is a challenging task; even if all the systems have been properly updated and all the known vulnerabilities have been patched, there is still the possibility of previously unknown zero day attack compromising the system. Honeypots offer a more proactive tool for detecting possible attacks. What is more, they can act as a tool for understanding attackers intentions. In this paper, we propose a design for a diversified honeypot. By increasing variability present in software, diversification decreases the number of assumptions an attacker can make about the target system.