Biblio

Filters: Author is Lin, Feng  [Clear All Filters]
2021-12-20
Zheng, Shengbao, Shu, Shaolong, Lin, Feng.  2021.  Modeling and Control of Discrete Event Systems under Joint Sensor-Actuator Cyber Attacks. 2021 6th International Conference on Automation, Control and Robotics Engineering (CACRE). :216–220.
In this paper, we investigate joint sensor-actuator cyber attacks in discrete event systems. We assume that attackers can attack some sensors and actuators at the same time by altering observations and control commands. Because of the nondeterminism in observation and control caused by cyber attacks, the behavior of the supervised systems becomes nondeterministic and deviates from the target. We define two bounds on languages, an upper-bound and a lower-bound, to describe the nondeterministic behavior. We then use the upper-bound language to investigate the safety supervisory control problem under cyber attacks. After introducing CA-controllability and CA-observability, we successfully solve the supervisory control problem under cyber attacks.
2021-09-30
Liu, Jianwei, Zou, Xiang, Han, Jinsong, Lin, Feng, Ren, Kui.  2020.  BioDraw: Reliable Multi-Factor User Authentication with One Single Finger Swipe. 2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS). :1–10.
Multi-factor user authentication (MFUA) becomes increasingly popular due to its superior security comparing with single-factor user authentication. However, existing MFUAs require multiple interactions between users and different authentication components when sensing the multiple factors, leading to extra overhead and bad use experiences. In this paper, we propose a secure and user-friendly MFUA system, namely BioDraw, which utilizes four categories of biometrics (impedance, geometry, composition, and behavior) of human hand plus the pattern-based password to identify and authenticate users. A user only needs to draw a pattern on a RFID tag array, while four biometrics can be simultaneously collected. Particularly, we design a gradient-based pattern recognition algorithm for pattern recognition and then a CNN-LSTM-based classifier for user recognition. Furthermore, to guarantee the systemic security, we propose a novel anti-spoofing scheme, called Binary ALOHA, which utilizes the inhabit randomness of RFID systems. We perform extensive experiments over 21 volunteers. The experiment result demonstrates that BioDraw can achieve a high authentication accuracy (with a false reject rate less than 2%) and is effective in defending against various attacks.
2019-01-16
Lin, Feng, Cho, Kun Woo, Song, Chen, Xu, Wenyao, Jin, Zhanpeng.  2018.  Brain Password: A Secure and Truly Cancelable Brain Biometrics for Smart Headwear. Proceedings of the 16th Annual International Conference on Mobile Systems, Applications, and Services. :296–309.
In recent years, biometric techniques (e.g., fingerprint or iris) are increasingly integrated into mobile devices to offer security advantages over traditional practices (e.g., passwords and PINs) due to their ease of use in user authentication. However, existing biometric systems are with controversy: once divulged, they are compromised forever - no one can grow a new fingerprint or iris. This work explores a truly cancelable brain-based biometric system for mobile platforms (e.g., smart headwear). Specifically, we present a new psychophysiological protocol via non-volitional brain response for trustworthy mobile authentication, with an application example of smart headwear. Particularly, we address the following research challenges in mobile biometrics with a theoretical and empirical combined manner: (1) how to generate reliable brain responses with sophisticated visual stimuli; (2) how to acquire the distinct brain response and analyze unique features in the mobile platform; (3) how to reset and change brain biometrics when the current biometric credential is divulged. To evaluate the proposed solution, we conducted a pilot study and achieved an f -score accuracy of 95.46% and equal error rate (EER) of 2.503%, thereby demonstrating the potential feasibility of neurofeedback based biometrics for smart headwear. Furthermore, we perform the cancelability study and the longitudinal study, respectively, to show the effectiveness and usability of our new proposed mobile biometric system. To the best of our knowledge, it is the first in-depth research study on truly cancelable brain biometrics for secure mobile authentication.
2017-09-19
Song, Chen, Lin, Feng, Ba, Zhongjie, Ren, Kui, Zhou, Chi, Xu, Wenyao.  2016.  My Smartphone Knows What You Print: Exploring Smartphone-based Side-channel Attacks Against 3D Printers. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :895–907.

Additive manufacturing, also known as 3D printing, has been increasingly applied to fabricate highly intellectual property (IP) sensitive products. However, the related IP protection issues in 3D printers are still largely underexplored. On the other hand, smartphones are equipped with rich onboard sensors and have been applied to pervasive mobile surveillance in many applications. These facts raise one critical question: is it possible that smartphones access the side-channel signals of 3D printer and then hack the IP information? To answer this, we perform an end-to-end study on exploring smartphone-based side-channel attacks against 3D printers. Specifically, we formulate the problem of the IP side-channel attack in 3D printing. Then, we investigate the possible acoustic and magnetic side-channel attacks using the smartphone built-in sensors. Moreover, we explore a magnetic-enhanced side-channel attack model to accurately deduce the vital directional operations of 3D printer. Experimental results show that by exploiting the side-channel signals collected by smartphones, we can successfully reconstruct the physical prints and their G-code with Mean Tendency Error of 5.87% on regular designs and 9.67% on complex designs, respectively. Our study demonstrates this new and practical smartphone-based side channel attack on compromising IP information during 3D printing.