Biblio

Filters: Author is Teraoka, Fumio  [Clear All Filters]
2022-06-09
Nagai, Yuki, Watanabe, Hiroki, Kondo, Takao, Teraoka, Fumio.  2021.  LiONv2: An Experimental Network Construction Tool Considering Disaggregation of Network Configuration and Device Configuration. 2021 IEEE 7th International Conference on Network Softwarization (NetSoft). :171–175.
An experimental network environment plays an important role to examine new systems and protocols. We have developed an experimental network construction tool called LiONv1 (Lightweight On-Demand Networking, ver.1). LiONv1 satisfies the following four requirements: programmer-friendly configuration file based on Infrastructure as Code, multiple virtualization technologies for virtual nodes, physical topology conscious virtual node placement, and L3 protocol agnostic virtual networks. None of existing experimental network environments satisfy all the four requirements. In this paper, we develop LiONv2 which satisfies three more requirements: diversity of available network devices, Internet-scale deployment, and disaggregation of network configuration and device configuration. LiONv2 employs NETCONF and YANG to achieve diversity of available network devices and Internet-scale deployment. LiONv2 also defines two YANG models which disaggregate network configuration and device configuration. LiONv2 is implemented in Go and C languages with public libraries for Go. Measurement results show that construction time of a virtual network is irrelevant to the number of virtual nodes if a single virtual node is created per physical node.
2017-09-26
Mikami, Kei, Ando, Daisuke, Kaneko, Kunitake, Teraoka, Fumio.  2016.  Verification of a Multi-Domain Authentication and Authorization Infrastructure Yamata-no-Orochi. Proceedings of the 11th International Conference on Future Internet Technologies. :69–75.

Yamata-no-Orochi is an authentication and authorization infrastructure across multiple service domains and provides Internet services with unified authentication and authorization mechanisms. In this paper, Yamata-no-Orochi is incorporated into a video distribution system to verify its general versatility as a multi-domain authentication and authorization infrastructure for Internet services. This paper also reduces the authorization time of Yamata-no-Orochi to fulfill the processing time constrains of the video distribution system. The evaluation results show that all the authentication and authorization processes work correctly and the performance of Yamata-no-Orochi is practical for the video distribution system.