Biblio

Filters: Author is Chen, Huifang  [Clear All Filters]
2022-05-06
Yu, Xiujun, Chen, Huifang, Xie, Lei.  2021.  A Secure Communication Protocol between Sensor Nodes and Sink Node in Underwater Acoustic Sensor Networks. 2021 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). :279—283.
Underwater acoustic sensor networks (UASNs) have been receiving more and more attention due to their wide applications and the marine data collection is one of the important applications of UASNs. However, the openness and unreliability of underwater acoustic communication links and the easy capture of underwater wireless devices make UASNs vulnerable to various attacks. On the other hand, due to the limited resources of underwater acoustic network nodes, the high bit error rates, large and variable propagation delays, and low bandwidth of acoustic channels, many mature security mechanisms in terrestrial wireless sensor networks cannot be applied in the underwater environment [1]. In this paper, a secure communication protocol for marine data collection was proposed to ensure the confidentiality and data integrity of communication between under sensor nodes and the sink node in UASNs.
2017-09-27
Chen, Zhongyue, Xu, Wen, Chen, Huifang.  2016.  Distributed Sensor Layout Optimization for Target Detection with Data Fusion. Proceedings of the 11th ACM International Conference on Underwater Networks & Systems. :50:1–50:2.
Distributed detection with data fusion has gained great attention in recent years. Collaborative detection improves the performance, and the optimal sensor deployment may change with time. It has been shown that with data fusion less sensors are needed to get the same detection ability when abundant sensors are deployed randomly. However, because of limitations on equipment number and deployment methods, fixed sensor locations may be preferred underwater. In this paper, we try to establish a theoretical framework for finding sensor positions to maximize the detection probability with a distributed sensor network. With joint data processing, detection performance is related to all the sensor locations; as sensor number grows, the optimization problem would become more difficult. To simplify the demonstration, we choose a 1-dimensional line deployment model and present the relevant numerical results.
Chen, Huifang, Zhang, Ying, Chen, Zhongyue, Xu, Wen.  2016.  Implementation and Application of Underwater Acoustic Sensor Nodes. Proceedings of the 11th ACM International Conference on Underwater Networks & Systems. :41:1–41:2.
Underwater sensing is envisioned using inexpensive underwater sensor nodes distributed over a wide area, deployed close to the bottom, and networked through underwater acoustic communications. In this paper, an underwater acoustic sensor node to perform the underwater sensing is designed and implemented. Specifically, we describe the design criteria, architecture and functional modules of underwater acoustic sensor node. Moreover, we give the experiment results of ocean current field estimation using the designed underwater acoustic sensor nodes at the sea area of Liuheng, Zhoushan, China.