Biblio

Found 737 results

Filters: Keyword is Computational modeling  [Clear All Filters]
2015-05-01
Lu Wang, Yung, N.H.C., Lisheng Xu.  2014.  Multiple-Human Tracking by Iterative Data Association and Detection Update. Intelligent Transportation Systems, IEEE Transactions on. 15:1886-1899.

Multiple-object tracking is an important task in automated video surveillance. In this paper, we present a multiple-human-tracking approach that takes the single-frame human detection results as input and associates them to form trajectories while improving the original detection results by making use of reliable temporal information in a closed-loop manner. It works by first forming tracklets, from which reliable temporal information is extracted, and then refining the detection responses inside the tracklets, which also improves the accuracy of tracklets' quantities. After this, local conservative tracklet association is performed and reliable temporal information is propagated across tracklets so that more detection responses can be refined. The global tracklet association is done last to resolve association ambiguities. Experimental results show that the proposed approach improves both the association and detection results. Comparison with several state-of-the-art approaches demonstrates the effectiveness of the proposed approach.

2015-05-04
Alsaleh, M.N., Al-Shaer, E.A..  2014.  Security configuration analytics using video games. Communications and Network Security (CNS), 2014 IEEE Conference on. :256-264.

Computing systems today have a large number of security configuration settings that enforce security properties. However, vulnerabilities and incorrect configuration increase the potential for attacks. Provable verification and simulation tools have been introduced to eliminate configuration conflicts and weaknesses, which can increase system robustness against attacks. Most of these tools require special knowledge in formal methods and precise specification for requirements in special languages, in addition to their excessive need for computing resources. Video games have been utilized by researchers to make educational software more attractive and engaging. Publishing these games for crowdsourcing can also stimulate competition between players and increase the game educational value. In this paper we introduce a game interface, called NetMaze, that represents the network configuration verification problem as a video game and allows for attack analysis. We aim to make the security analysis and hardening usable and accurately achievable, using the power of video games and the wisdom of crowdsourcing. Players can easily discover weaknesses in network configuration and investigate new attack scenarios. In addition, the gameplay scenarios can also be used to analyze and learn attack attribution considering human factors. In this paper, we present a provable mapping from the network configuration to 3D game objects.
 

Shaobu Wang, Shuai Lu, Ning Zhou, Guang Lin, Elizondo, M., Pai, M.A..  2014.  Dynamic-Feature Extraction, Attribution, and Reconstruction (DEAR) Method for Power System Model Reduction. Power Systems, IEEE Transactions on. 29:2049-2059.

In interconnected power systems, dynamic model reduction can be applied to generators outside the area of interest (i.e., study area) to reduce the computational cost associated with transient stability studies. This paper presents a method of deriving the reduced dynamic model of the external area based on dynamic response measurements. The method consists of three steps, namely dynamic-feature extraction, attribution, and reconstruction (DEAR). In this method, a feature extraction technique, such as singular value decomposition (SVD), is applied to the measured generator dynamics after a disturbance. Characteristic generators are then identified in the feature attribution step for matching the extracted dynamic features with the highest similarity, forming a suboptimal “basis” of system dynamics. In the reconstruction step, generator state variables such as rotor angles and voltage magnitudes are approximated with a linear combination of the characteristic generators, resulting in a quasi-nonlinear reduced model of the original system. The network model is unchanged in the DEAR method. Tests on several IEEE standard systems show that the proposed method yields better reduction ratio and response errors than the traditional coherency based reduction methods.
 

2015-05-05
Zadeh, B.Q., Handschuh, S..  2014.  Random Manhattan Indexing. Database and Expert Systems Applications (DEXA), 2014 25th International Workshop on. :203-208.

Vector space models (VSMs) are mathematically well-defined frameworks that have been widely used in text processing. In these models, high-dimensional, often sparse vectors represent text units. In an application, the similarity of vectors -- and hence the text units that they represent -- is computed by a distance formula. The high dimensionality of vectors, however, is a barrier to the performance of methods that employ VSMs. Consequently, a dimensionality reduction technique is employed to alleviate this problem. This paper introduces a new method, called Random Manhattan Indexing (RMI), for the construction of L1 normed VSMs at reduced dimensionality. RMI combines the construction of a VSM and dimension reduction into an incremental, and thus scalable, procedure. In order to attain its goal, RMI employs the sparse Cauchy random projections.

2022-04-20
Zhang, Kailong, Li, Jiwei, Lu, Zhou, Luo, Mei, Wu, Xiao.  2013.  A Scene-Driven Modeling Reconfigurable Hardware-in-Loop Simulation Environment for the Verification of an Autonomous CPS. 2013 5th International Conference on Intelligent Human-Machine Systems and Cybernetics. 1:446–451.
Cyber-Physical System(CPS) is now a new evolutional morphology of embedded systems. With features of merging computation and physical processes together, the traditional verification and simulation methods have being challenged recently. After analyzed the state-of-art of related research, a new simulation environment is studied according to the characters of a special autonomous cyber-physical system-Unmanned Aerial Vehicle, and designed to be scene-driven, modeling and reconfigurable. In this environment, a novel CPS-in-loop architecture, which can support simulations under different customized scenes, is studied firstly to ensure its opening and flexibility. And as another foundation, some dynamics models of CPS and atmospheric ones of relative sensors are introduced to simulate the motion of CPS and the change of its posture. On the basis above, the reconfigurable scene-driven mechanisms that are Based on hybrid events are mainly excogitated. Then, different scenes can be configured in terms of special verification requirements, and then each scene will be decomposed into a spatio-temporal event sequence and scheduled by a scene executor. With this environment, not only the posture of CPS, but also the autonomy of its behavior can be verified and observed. It will be meaningful for the design of such autonomous CPS.
Jun, Shen, Cuibo, Yu.  2013.  The Study on the Self-Similarity and Simulation of CPS Traffic. 2013 IEEE 11th International Conference on Dependable, Autonomic and Secure Computing. :215–219.
CPS traffic characteristics is one of key techniques of Cyber-Physical Systems (CPS). A deep research of CPS network traffic characteristics can help to better plan and design CPS networks. A brief overview of the key concepts of CPS is firstly presented. Then CPS application scenarios are analyzed in details and classified. The characteristics of CPS traffic is analyzed theoretically for different CPS application scenarios. At last, the characteristics of CPS traffic is verified using NS-2 simulation.
Hassell, Suzanne, Beraud, Paul, Cruz, Alen, Ganga, Gangadhar, Martin, Steve, Toennies, Justin, Vazquez, Pablo, Wright, Gary, Gomez, Daniel, Pietryka, Frank et al..  2012.  Evaluating network cyber resiliency methods using cyber threat, Vulnerability and Defense Modeling and Simulation. MILCOM 2012 - 2012 IEEE Military Communications Conference. :1—6.
This paper describes a Cyber Threat, Vulnerability and Defense Modeling and Simulation tool kit used for evaluation of systems and networks to improve cyber resiliency. This capability is used to help increase the resiliency of networks at various stages of their lifecycle, from initial design and architecture through the operation of deployed systems and networks. Resiliency of computer systems and networks to cyber threats is facilitated by the modeling of agile and resilient defenses versus threats and running multiple simulations evaluated against resiliency metrics. This helps network designers, cyber analysts and Security Operations Center personnel to perform trades using what-if scenarios to select resiliency capabilities and optimally design and configure cyber resiliency capabilities for their systems and networks.
Wang, Yuying, Zhou, Xingshe, Liang, Dongfang.  2012.  Study on Integrated Modeling Methods toward Co-Simulation of Cyber-Physical System. 2012 IEEE 14th International Conference on High Performance Computing and Communication 2012 IEEE 9th International Conference on Embedded Software and Systems. :1736–1740.
Cyber-physical systems are particularly difficult to model and simulate because their components mix many different system modalities. In this paper we address the main technical challenges on system simulation taking into account by new characters of CPS, and provide a comprehensive view of the simulation modeling methods for integration of continuous-discrete model. Regards to UML and Simulink, two most widely accepted modeling methods in industrial designs, we study on three methods to perform the cooperation of these two kinds of heterogeneous models for co-simulation. The solution of an implementation of co-simulation method for CPS was designed under three levels architecture.
Junjie, Tang, Jianjun, Zhao, Jianwan, Ding, Liping, Chen, Gang, Xie, Bin, Gu, Mengfei, Yang.  2012.  Cyber-Physical Systems Modeling Method Based on Modelica. 2012 IEEE Sixth International Conference on Software Security and Reliability Companion. :188–191.
Cyber-physical systems (CPS) is an integration of computation with physical systems and physical processes. It is widely used in energy, health and other industrial areas. Modeling and simulation is of the greatest challenges in CPS research. Modelica has a great potentiality in the modeling and simulation of CPS. We analyze the characteristics and requirements of CPS modeling, and also the features of Modelica in the paper. In respect of information model, physical model and model interface, this paper introduces a unified modeling method for CPS, based on Modelica. The method provides a reliable foundation for the design, analysis and verification of CPS.
2014-09-26
Howe, AE., Ray, I, Roberts, M., Urbanska, M., Byrne, Z..  2012.  The Psychology of Security for the Home Computer User. Security and Privacy (SP), 2012 IEEE Symposium on. :209-223.

The home computer user is often said to be the weakest link in computer security. They do not always follow security advice, and they take actions, as in phishing, that compromise themselves. In general, we do not understand why users do not always behave safely, which would seem to be in their best interest. This paper reviews the literature of surveys and studies of factors that influence security decisions for home computer users. We organize the review in four sections: understanding of threats, perceptions of risky behavior, efforts to avoid security breaches and attitudes to security interventions. We find that these studies reveal a lot of reasons why current security measures may not match the needs or abilities of home computer users and suggest future work needed to inform how security is delivered to this user group.

Kashyap, V., Wiedermann, B., Hardekopf, B..  2011.  Timing- and Termination-Sensitive Secure Information Flow: Exploring a New Approach. Security and Privacy (SP), 2011 IEEE Symposium on. :413-428.

Secure information flow guarantees the secrecy and integrity of data, preventing an attacker from learning secret information (secrecy) or injecting untrusted information (integrity). Covert channels can be used to subvert these security guarantees, for example, timing and termination channels can, either intentionally or inadvertently, violate these guarantees by modifying the timing or termination behavior of a program based on secret or untrusted data. Attacks using these covert channels have been published and are known to work in practiceâ as techniques to prevent non-covert channels are becoming increasingly practical, covert channels are likely to become even more attractive for attackers to exploit. The goal of this paper is to understand the subtleties of timing and termination-sensitive noninterference, explore the space of possible strategies for enforcing noninterference guarantees, and formalize the exact guarantees that these strategies can enforce. As a result of this effort we create a novel strategy that provides stronger security guarantees than existing work, and we clarify claims in existing work about what guarantees can be made.

2020-01-20
Ingols, Kyle, Chu, Matthew, Lippmann, Richard, Webster, Seth, Boyer, Stephen.  2009.  Modeling Modern Network Attacks and Countermeasures Using Attack Graphs. 2009 Annual Computer Security Applications Conference. :117–126.
By accurately measuring risk for enterprise networks, attack graphs allow network defenders to understand the most critical threats and select the most effective countermeasures. This paper describes substantial enhancements to the NetSPA attack graph system required to model additional present-day threats (zero-day exploits and client-side attacks) and countermeasures (intrusion prevention systems, proxy firewalls, personal firewalls, and host-based vulnerability scans). Point-to-point reachability algorithms and structures were extensively redesigned to support "reverse" reachability computations and personal firewalls. Host-based vulnerability scans are imported and analyzed. Analysis of an operational network with 84 hosts demonstrates that client-side attacks pose a serious threat. Experiments on larger simulated networks demonstrated that NetSPA's previous excellent scaling is maintained. Less than two minutes are required to completely analyze a four-enclave simulated network with more than 40,000 hosts protected by personal firewalls.