Biblio

Found 737 results

Filters: Keyword is Computational modeling  [Clear All Filters]
2018-01-23
Wang, B., Song, W., Lou, W., Hou, Y. T..  2017.  Privacy-preserving pattern matching over encrypted genetic data in cloud computing. IEEE INFOCOM 2017 - IEEE Conference on Computer Communications. :1–9.

Personalized medicine performs diagnoses and treatments according to the DNA information of the patients. The new paradigm will change the health care model in the future. A doctor will perform the DNA sequence matching instead of the regular clinical laboratory tests to diagnose and medicate the diseases. Additionally, with the help of the affordable personal genomics services such as 23andMe, personalized medicine will be applied to a great population. Cloud computing will be the perfect computing model as the volume of the DNA data and the computation over it are often immense. However, due to the sensitivity, the DNA data should be encrypted before being outsourced into the cloud. In this paper, we start from a practical system model of the personalize medicine and present a solution for the secure DNA sequence matching problem in cloud computing. Comparing with the existing solutions, our scheme protects the DNA data privacy as well as the search pattern to provide a better privacy guarantee. We have proved that our scheme is secure under the well-defined cryptographic assumption, i.e., the sub-group decision assumption over a bilinear group. Unlike the existing interactive schemes, our scheme requires only one round of communication, which is critical in practical application scenarios. We also carry out a simulation study using the real-world DNA data to evaluate the performance of our scheme. The simulation results show that the computation overhead for real world problems is practical, and the communication cost is small. Furthermore, our scheme is not limited to the genome matching problem but it applies to general privacy preserving pattern matching problems which is widely used in real world.

2018-05-24
Tosh, D. K., Shetty, S., Liang, X., Kamhoua, C. A., Kwiat, K. A., Njilla, L..  2017.  Security Implications of Blockchain Cloud with Analysis of Block Withholding Attack. 2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID). :458–467.

The blockchain technology has emerged as an attractive solution to address performance and security issues in distributed systems. Blockchain's public and distributed peer-to-peer ledger capability benefits cloud computing services which require functions such as, assured data provenance, auditing, management of digital assets, and distributed consensus. Blockchain's underlying consensus mechanism allows to build a tamper-proof environment, where transactions on any digital assets are verified by set of authentic participants or miners. With use of strong cryptographic methods, blocks of transactions are chained together to enable immutability on the records. However, achieving consensus demands computational power from the miners in exchange of handsome reward. Therefore, greedy miners always try to exploit the system by augmenting their mining power. In this paper, we first discuss blockchain's capability in providing assured data provenance in cloud and present vulnerabilities in blockchain cloud. We model the block withholding (BWH) attack in a blockchain cloud considering distinct pool reward mechanisms. BWH attack provides rogue miner ample resources in the blockchain cloud for disrupting honest miners' mining efforts, which was verified through simulations.

2018-01-16
Feng, X., Zheng, Z., Cansever, D., Swami, A., Mohapatra, P..  2017.  A signaling game model for moving target defense. IEEE INFOCOM 2017 - IEEE Conference on Computer Communications. :1–9.

Incentive-driven advanced attacks have become a major concern to cyber-security. Traditional defense techniques that adopt a passive and static approach by assuming a fixed attack type are insufficient in the face of highly adaptive and stealthy attacks. In particular, a passive defense approach often creates information asymmetry where the attacker knows more about the defender. To this end, moving target defense (MTD) has emerged as a promising way to reverse this information asymmetry. The main idea of MTD is to (continuously) change certain aspects of the system under control to increase the attacker's uncertainty, which in turn increases attack cost/complexity and reduces the chance of a successful exploit in a given amount of time. In this paper, we go one step beyond and show that MTD can be further improved when combined with information disclosure. In particular, we consider that the defender adopts a MTD strategy to protect a critical resource across a network of nodes, and propose a Bayesian Stackelberg game model with the defender as the leader and the attacker as the follower. After fully characterizing the defender's optimal migration strategies, we show that the defender can design a signaling scheme to exploit the uncertainty created by MTD to further affect the attacker's behavior for its own advantage. We obtain conditions under which signaling is useful, and show that strategic information disclosure can be a promising way to further reverse the information asymmetry and achieve more efficient active defense.

2017-12-20
Le, T. A., Baydin, A. G., Zinkov, R., Wood, F..  2017.  Using synthetic data to train neural networks is model-based reasoning. 2017 International Joint Conference on Neural Networks (IJCNN). :3514–3521.
We draw a formal connection between using synthetic training data to optimize neural network parameters and approximate, Bayesian, model-based reasoning. In particular, training a neural network using synthetic data can be viewed as learning a proposal distribution generator for approximate inference in the synthetic-data generative model. We demonstrate this connection in a recognition task where we develop a novel Captcha-breaking architecture and train it using synthetic data, demonstrating both state-of-the-art performance and a way of computing task-specific posterior uncertainty. Using a neural network trained this way, we also demonstrate successful breaking of real-world Captchas currently used by Facebook and Wikipedia. Reasoning from these empirical results and drawing connections with Bayesian modeling, we discuss the robustness of synthetic data results and suggest important considerations for ensuring good neural network generalization when training with synthetic data.
2018-12-10
Farooq, M. J., Zhu, Q..  2017.  Secure and reconfigurable network design for critical information dissemination in the Internet of battlefield things (IoBT). 2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt). :1–8.

The Internet of things (IoT) is revolutionizing the management and control of automated systems leading to a paradigm shift in areas such as smart homes, smart cities, health care, transportation, etc. The IoT technology is also envisioned to play an important role in improving the effectiveness of military operations in battlefields. The interconnection of combat equipment and other battlefield resources for coordinated automated decisions is referred to as the Internet of battlefield things (IoBT). IoBT networks are significantly different from traditional IoT networks due to the battlefield specific challenges such as the absence of communication infrastructure, and the susceptibility of devices to cyber and physical attacks. The combat efficiency and coordinated decision-making in war scenarios depends highly on real-time data collection, which in turn relies on the connectivity of the network and the information dissemination in the presence of adversaries. This work aims to build the theoretical foundations of designing secure and reconfigurable IoBT networks. Leveraging the theories of stochastic geometry and mathematical epidemiology, we develop an integrated framework to study the communication of mission-critical data among different types of network devices and consequently design the network in a cost effective manner.

2018-02-06
Guion, J., Reith, M..  2017.  Cyber Terrain Mission Mapping: Tools and Methodologies. 2017 International Conference on Cyber Conflict (CyCon U.S.). :105–111.

The Air Force is shifting its cybersecurity paradigm from an information technology (IT)-centric toward a mission oriented approach. Instead of focusing on how to defend its IT infrastructure, it seeks to provide mission assurance by defending mission relevant cyber terrain enabling mission execution in a contested environment. In order to actively defend a mission in cyberspace, efforts must be taken to understand and document that mission's dependence on cyberspace and cyber assets. This is known as cyber terrain mission mapping. This paper seeks to define mission mapping and overview methodologies. We also analyze current tools seeking to provide cyber situational awareness through mission mapping or cyber dependency impact analysis and identify existing shortfalls.

2018-01-23
Moghaddam, F. F., Wieder, P., Yahyapour, R..  2017.  A policy-based identity management schema for managing accesses in clouds. 2017 8th International Conference on the Network of the Future (NOF). :91–98.

Security challenges are the most important obstacles for the advancement of IT-based on-demand services and cloud computing as an emerging technology. Lack of coincidence in identity management models based on defined policies and various security levels in different cloud servers is one of the most challenging issues in clouds. In this paper, a policy- based user authentication model has been presented to provide a reliable and scalable identity management and to map cloud users' access requests with defined polices of cloud servers. In the proposed schema several components are provided to define access policies by cloud servers, to apply policies based on a structural and reliable ontology, to manage user identities and to semantically map access requests by cloud users with defined polices. Finally, the reliability and efficiency of this policy-based authentication schema have been evaluated by scientific performance, security and competitive analysis. Overall, the results show that this model has met defined demands of the research to enhance the reliability and efficiency of identity management in cloud computing environments.

2017-12-20
Nguyen, C. T., Hoang, T. T., Phan, V. X..  2017.  A simple method for anonymous tag cardinality estimation in RFID systems with false detection. 2017 4th NAFOSTED Conference on Information and Computer Science. :101–104.

This work investigates the anonymous tag cardinality estimation problem in radio frequency identification systems with frame slotted aloha-based protocol. Each tag, instead of sending its identity upon receiving the reader's request, randomly responds by only one bit in one of the time slots of the frame due to privacy and security. As a result, each slot with no response is observed as in an empty state, while the others are non-empty. Those information can be used for the tag cardinality estimation. Nevertheless, under effects of fading and noise, time slots with tags' response might be observed as empty, while those with no response might be detected as non-empty, which is known as a false detection phenomenon. The performance of conventional estimation methods is, thus, degraded because of inaccurate observations. In order to cope with this issue, we propose a new estimation algorithm using expectation-maximization method. Both the tag cardinality and a probability of false detection are iteratively estimated to maximize a likelihood function. Computer simulations will be provided to show the merit of the proposed method.

2018-05-30
Baseri, Y., Hafid, A., Togou, M. A., Cherkaoui, S..  2017.  Controlling Cloud Data Access Privilege: Cryptanalysis and Security Enhancement. 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC). :1–5.

Recently, Jung et al. [1] proposed a data access privilege scheme and claimed that their scheme addresses data and identity privacy as well as multi-authority, and provides data access privilege for attribute-based encryption. In this paper, we show that this scheme, and also its former and latest versions (i.e. [2] and [3] respectively) suffer from a number of weaknesses in terms of finegrained access control, users and authorities collusion attack, user authorization, and user anonymity protection. We then propose our new scheme that overcomes these shortcomings. We also prove the security of our scheme against user collusion attacks, authority collusion attacks and chosen plaintext attacks. Lastly, we show that the efficiency of our scheme is comparable with existing related schemes.

2017-12-12
Davis, D. B., Featherston, J., Fukuda, M., Asuncion, H. U..  2017.  Data Provenance for Multi-Agent Models. 2017 IEEE 13th International Conference on e-Science (e-Science). :39–48.

Multi-agent simulations are useful for exploring collective patterns of individual behavior in social, biological, economic, network, and physical systems. However, there is no provenance support for multi-agent models (MAMs) in a distributed setting. To this end, we introduce ProvMASS, a novel approach to capture provenance of MAMs in a distributed memory by combining inter-process identification, lightweight coordination of in-memory provenance storage, and adaptive provenance capture. ProvMASS is built on top of the Multi-Agent Spatial Simulation (MASS) library, a framework that combines multi-agent systems with large-scale fine-grained agent-based models, or MAMs. Unlike other environments supporting MAMs, MASS parallelizes simulations with distributed memory, where agents and spatial data are shared application resources. We evaluate our approach with provenance queries to support three use cases and performance measures. Initial results indicate that our approach can support various provenance queries for MAMs at reasonable performance overhead.

2018-06-11
Armstrong, D., Nasri, B., Karri, R., Shahrjerdi, D..  2017.  Hybrid silicon CMOS-carbon nanotube physically unclonable functions. 2017 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S). :1–3.

Physically unclonable functions (PUFs) are used to uniquely identify electronic devices. Here, we introduce a hybrid silicon CMOS-nanotube PUF circuit that uses the variations of nanotube transistors to generate a random response. An analog silicon circuit subsequently converts the nanotube response to zero or one bits. We fabricate an array of nanotube transistors to study and model their device variability. The behavior of the hybrid CMOS-nanotube PUF is then simulated. The parameters of the analog circuit are tuned to achieve the desired normalized Hamming inter-distance of 0.5. The co-design of the nanotube array and the silicon CMOS is an attractive feature for increasing the immunity of the hybrid PUF against an unauthorized duplication. The heterogeneous integration of nanotubes with silicon CMOS offers a new strategy for realizing security tokens that are strong, low-cost, and reliable.

2018-04-11
Lahbib, A., Toumi, K., Elleuch, S., Laouiti, A., Martin, S..  2017.  Link Reliable and Trust Aware RPL Routing Protocol for Internet of Things. 2017 IEEE 16th International Symposium on Network Computing and Applications (NCA). :1–5.

Internet of Things (IoT) is characterized by heterogeneous devices that interact with each other on a collaborative basis to fulfill a common goal. In this scenario, some of the deployed devices are expected to be constrained in terms of memory usage, power consumption and processing resources. To address the specific properties and constraints of such networks, a complete stack of standardized protocols has been developed, among them the Routing Protocol for Low-Power and lossy networks (RPL). However, this protocol is exposed to a large variety of attacks from the inside of the network itself. To fill this gap, this paper focuses on the design and the integration of a novel Link reliable and Trust aware model into the RPL protocol. Our approach aims to ensure Trust among entities and to provide QoS guarantees during the construction and the maintenance of the network routing topology. Our model targets both node and link Trust and follows a multidimensional approach to enable an accurate Trust value computation for IoT entities. To prove the efficiency of our proposal, this last has been implemented and tested successfully within an IoT environment. Therefore, a set of experiments has been made to show the high accuracy level of our system.

2022-04-20
Deschamps, Henrick, Cappello, Gerlando, Cardoso, Janette, Siron, Pierre.  2017.  Toward a Formalism to Study the Scheduling of Cyber-Physical Systems Simulations. 2017 IEEE/ACM 21st International Symposium on Distributed Simulation and Real Time Applications (DS-RT). :1–8.
This paper presents ongoing work on the formalism of Cyber-Physical Systems (CPS) simulations. These systems are distributed real-time systems, and their simulations might be distributed or not. In this paper, we propose a model to describe the modular components forming a simulation of a CPS. The main goal is to introduce a model of generic simulation distributed architecture, on which we are able to execute a logical architecture of simulation. This architecture of simulation allows the expression of structural and behavioural constraints on the simulation, abstracting its execution. We will propose two implementations of the execution architecture based on generic architectures of distributed simulation: $\cdot$ The High Level Architecture (HLA), an IEEE standard for distributed simulation, and one of its open-source implementation of RunTime Infrastructure (RTI): CERTI. $\cdot$ The Distributed Simulation Scheduler (DSS), an Airbus framework scheduling predefined models. Finally, we present the initial results obtained applying our formalism to the open-source case study from the ROSACE case study.
2017-12-28
Vizarreta, P., Heegaard, P., Helvik, B., Kellerer, W., Machuca, C. M..  2017.  Characterization of failure dynamics in SDN controllers. 2017 9th International Workshop on Resilient Networks Design and Modeling (RNDM). :1–7.

With Software Defined Networking (SDN) the control plane logic of forwarding devices, switches and routers, is extracted and moved to an entity called SDN controller, which acts as a broker between the network applications and physical network infrastructure. Failures of the SDN controller inhibit the network ability to respond to new application requests and react to events coming from the physical network. Despite of the huge impact that a controller has on the network performance as a whole, a comprehensive study on its failure dynamics is still missing in the state of the art literature. The goal of this paper is to analyse, model and evaluate the impact that different controller failure modes have on its availability. A model in the formalism of Stochastic Activity Networks (SAN) is proposed and applied to a case study of a hypothetical controller based on commercial controller implementations. In case study we show how the proposed model can be used to estimate the controller steady state availability, quantify the impact of different failure modes on controller outages, as well as the effects of software ageing, and impact of software reliability growth on the transient behaviour.

Vu, Q. H., Ruta, D., Cen, L..  2017.  An ensemble model with hierarchical decomposition and aggregation for highly scalable and robust classification. 2017 Federated Conference on Computer Science and Information Systems (FedCSIS). :149–152.

This paper introduces an ensemble model that solves the binary classification problem by incorporating the basic Logistic Regression with the two recent advanced paradigms: extreme gradient boosted decision trees (xgboost) and deep learning. To obtain the best result when integrating sub-models, we introduce a solution to split and select sets of features for the sub-model training. In addition to the ensemble model, we propose a flexible robust and highly scalable new scheme for building a composite classifier that tries to simultaneously implement multiple layers of model decomposition and outputs aggregation to maximally reduce both bias and variance (spread) components of classification errors. We demonstrate the power of our ensemble model to solve the problem of predicting the outcome of Hearthstone, a turn-based computer game, based on game state information. Excellent predictive performance of our model has been acknowledged by the second place scored in the final ranking among 188 competing teams.

2018-02-02
Modarresi, A., Gangadhar, S., Sterbenz, J. P. G..  2017.  A framework for improving network resilience using SDN and fog nodes. 2017 9th International Workshop on Resilient Networks Design and Modeling (RNDM). :1–7.

The IoT (Internet of Things) is one of the primary reasons for the massive growth in the number of connected devices to the Internet, thus leading to an increased volume of traffic in the core network. Fog and edge computing are becoming a solution to handle IoT traffic by moving timesensitive processing to the edge of the network, while using the conventional cloud for historical analysis and long-term storage. Providing processing, storage, and network communication at the edge network are the aim of fog computing to reduce delay, network traffic, and decentralise computing. In this paper, we define a framework that realises fog computing that can be extended to install any service of choice. Our framework utilises fog nodes as an extension of the traditional switch to include processing, networking, and storage. The fog nodes act as local decision-making elements that interface with software-defined networking (SDN), to be able to push updates throughout the network. To test our framework, we develop an IP spoofing security application and ensure its correctness through multiple experiments.

You, J., Shangguan, J., Sun, Y., Wang, Y..  2017.  Improved trustworthiness judgment in open networks. 2017 International Smart Cities Conference (ISC2). :1–2.

The collaborative recommendation mechanism is beneficial for the subject in an open network to find efficiently enough referrers who directly interacted with the object and obtain their trust data. The uncertainty analysis to the collected trust data selects the reliable trust data of trustworthy referrers, and then calculates the statistical trust value on certain reliability for any object. After that the subject can judge its trustworthiness and further make a decision about interaction based on the given threshold. The feasibility of this method is verified by three experiments which are designed to validate the model's ability to fight against malicious service, the exaggeration and slander attack. The interactive success rate is significantly improved by using the new model, and the malicious entities are distinguished more effectively than the comparative model.

2017-12-12
Suh, Y. K., Ma, J..  2017.  SuperMan: A Novel System for Storing and Retrieving Scientific-Simulation Provenance for Efficient Job Executions on Computing Clusters. 2017 IEEE 2nd International Workshops on Foundations and Applications of Self* Systems (FAS*W). :283–288.

Compute-intensive simulations typically charge substantial workloads on an online simulation platform backed by limited computing clusters and storage resources. Some (or most) of the simulations initiated by users may accompany input parameters/files that have been already provided by other (or same) users in the past. Unfortunately, these duplicate simulations may aggravate the performance of the platform by drastic consumption of the limited resources shared by a number of users on the platform. To minimize or avoid conducting repeated simulations, we present a novel system, called SUPERMAN (SimUlation ProvEnance Recycling MANager) that can record simulation provenances and recycle the results of past simulations. This system presents a great opportunity to not only reutilize existing results but also perform various analytics helpful for those who are not familiar with the platform. The system also offers interoperability across other systems by collecting the provenances in a standardized format. In our simulated experiments we found that over half of past computing jobs could be answered without actual executions by our system.

2018-02-02
Modarresi, A., Sterbenz, J. P. G..  2017.  Toward resilient networks with fog computing. 2017 9th International Workshop on Resilient Networks Design and Modeling (RNDM). :1–7.

Cloud computing is a solution to reduce the cost of IT by providing elastic access to shared resources. It also provides solutions for on-demand computing power and storage for devices at the edge networks with limited resources. However, increasing the number of connected devices caused by IoT architecture leads to higher network traffic and delay for cloud computing. The centralised architecture of cloud computing also makes the edge networks more susceptible to challenges in the core network. Fog computing is a solution to decrease the network traffic, delay, and increase network resilience. In this paper, we study how fog computing may improve network resilience. We also conduct a simulation to study the effect of fog computing on network traffic and delay. We conclude that using fog computing prepares the network for better response time in case of interactive requests and makes the edge networks more resilient to challenges in the core network.

2019-05-31
Bradley Potteiger, William Emfinger, Himanshu Neema, Xenofon Koutsoukos, CheeYee Tang, Keith Stouffer.  2017.  Evaluating the effects of cyber-attacks on cyber physical systems using a hardware-in-the-loop simulation testbed. Resilience Week (RWS). :177-183.

Cyber-Physical Systems (CPS) consist of embedded computers with sensing and actuation capability, and are integrated into and tightly coupled with a physical system. Because the physical and cyber components of the system are tightly coupled, cyber-security is important for ensuring the system functions properly and safely. However, the effects of a cyberattack on the whole system may be difficult to determine, analyze, and therefore detect and mitigate. This work presents a model based software development framework integrated with a hardware-in-the-loop (HIL) testbed for rapidly deploying CPS attack experiments. The framework provides the ability to emulate low level attacks and obtain platform specific performance measurements that are difficult to obtain in a traditional simulation environment. The framework improves the cybersecurity design process which can become more informed and customized to the production environment of a CPS. The developed framework is illustrated with a case study of a railway transportation system.

2018-09-30
B. Potteiger, W. Emfinger, H. Neema, X. Koutosukos, C. Tang, K. Stouffer.  2017.  Evaluating the effects of cyber-attacks on cyber physical systems using a hardware-in-the-loop simulation testbed. 2017 Resilience Week (RWS). :177-183.
Cyber-Physical Systems (CPS) consist of embedded computers with sensing and actuation capability, and are integrated into and tightly coupled with a physical system. Because the physical and cyber components of the system are tightly coupled, cyber-security is important for ensuring the system functions properly and safely. However, the effects of a cyberattack on the whole system may be difficult to determine, analyze, and therefore detect and mitigate. This work presents a model based software development framework integrated with a hardware-in-the-loop (HIL) testbed for rapidly deploying CPS attack experiments. The framework provides the ability to emulate low level attacks and obtain platform specific performance measurements that are difficult to obtain in a traditional simulation environment. The framework improves the cybersecurity design process which can become more informed and customized to the production environment of a CPS. The developed framework is illustrated with a case study of a railway transportation system.
2017-12-12
Pacheco, J., Zhu, X., Badr, Y., Hariri, S..  2017.  Enabling Risk Management for Smart Infrastructures with an Anomaly Behavior Analysis Intrusion Detection System. 2017 IEEE 2nd International Workshops on Foundations and Applications of Self* Systems (FAS*W). :324–328.

The Internet of Things (IoT) connects not only computers and mobile devices, but it also interconnects smart buildings, homes, and cities, as well as electrical grids, gas, and water networks, automobiles, airplanes, etc. However, IoT applications introduce grand security challenges due to the increase in the attack surface. Current security approaches do not handle cybersecurity from a holistic point of view; hence a systematic cybersecurity mechanism needs to be adopted when designing IoTbased applications. In this work, we present a risk management framework to deploy secure IoT-based applications for Smart Infrastructures at the design time and the runtime. At the design time, we propose a risk management method that is appropriate for smart infrastructures. At the design time, our framework relies on the Anomaly Behavior Analysis (ABA) methodology enabled by the Autonomic Computing paradigm and an intrusion detection system to detect any threat that can compromise IoT infrastructures by. Our preliminary experimental results show that our framework can be used to detect threats and protect IoT premises and services.

Hariri, S., Tunc, C., Badr, Y..  2017.  Resilient Dynamic Data Driven Application Systems as a Service (rDaaS): A Design Overview. 2017 IEEE 2nd International Workshops on Foundations and Applications of Self* Systems (FAS*W). :352–356.

To overcome the current cybersecurity challenges of protecting our cyberspace and applications, we present an innovative cloud-based architecture to offer resilient Dynamic Data Driven Application Systems (DDDAS) as a cloud service that we refer to as resilient DDDAS as a Service (rDaaS). This architecture integrates Service Oriented Architecture (SOA) and DDDAS paradigms to offer the next generation of resilient and agile DDDAS-based cyber applications, particularly convenient for critical applications such as Battle and Crisis Management applications. Using the cloud infrastructure to offer resilient DDDAS routines and applications, large scale DDDAS applications can be developed by users from anywhere and by using any device (mobile or stationary) with the Internet connectivity. The rDaaS provides transformative capabilities to achieve superior situation awareness (i.e., assessment, visualization, and understanding), mission planning and execution, and resilient operations.

2022-04-20
Sanjab, Anibal, Saad, Walid.  2016.  On Bounded Rationality in Cyber-Physical Systems Security: Game-Theoretic Analysis with Application to Smart Grid Protection. 2016 Joint Workshop on Cyber- Physical Security and Resilience in Smart Grids (CPSR-SG). :1–6.
In this paper, a general model for cyber-physical systems (CPSs), that captures the diffusion of attacks from the cyber layer to the physical system, is studied. In particular, a game-theoretic approach is proposed to analyze the interactions between one defender and one attacker over a CPS. In this game, the attacker launches cyber attacks on a number of cyber components of the CPS to maximize the potential harm to the physical system while the system operator chooses to defend a number of cyber nodes to thwart the attacks and minimize potential damage to the physical side. The proposed game explicitly accounts for the fact that both attacker and defender can have different computational capabilities and disparate levels of knowledge of the system. To capture such bounded rationality of attacker and defender, a novel approach inspired from the behavioral framework of cognitive hierarchy theory is developed. In this framework, the defender is assumed to be faced with an attacker that can have different possible thinking levels reflecting its knowledge of the system and computational capabilities. To solve the game, the optimal strategies of each attacker type are characterized and the optimal response of the defender facing these different types is computed. This general approach is applied to smart grid security considering wide area protection with energy markets implications. Numerical results show that a deviation from the Nash equilibrium strategy is beneficial when the bounded rationality of the attacker is considered. Moreover, the results show that the defender's incentive to deviate from the Nash equilibrium decreases when faced with an attacker that has high computational ability.
2017-11-20
Cordero, C. García, Hauke, S., Mühlhäuser, M., Fischer, M..  2016.  Analyzing flow-based anomaly intrusion detection using Replicator Neural Networks. 2016 14th Annual Conference on Privacy, Security and Trust (PST). :317–324.

Defending key network infrastructure, such as Internet backbone links or the communication channels of critical infrastructure, is paramount, yet challenging. The inherently complex nature and quantity of network data impedes detecting attacks in real world settings. In this paper, we utilize features of network flows, characterized by their entropy, together with an extended version of the original Replicator Neural Network (RNN) and deep learning techniques to learn models of normality. This combination allows us to apply anomaly-based intrusion detection on arbitrarily large amounts of data and, consequently, large networks. Our approach is unsupervised and requires no labeled data. It also accurately detects network-wide anomalies without presuming that the training data is completely free of attacks. The evaluation of our intrusion detection method, on top of real network data, indicates that it can accurately detect resource exhaustion attacks and network profiling techniques of varying intensities. The developed method is efficient because a normality model can be learned by training an RNN within a few seconds only.