Biblio
Information flow security has been considered as a critical requirement on complicated component-based software. The recent efforts on the compositional information flow analyses were limited on the expressiveness of security lattice and the efficiency of compositional enforcement. Extending these approaches to support more general security lattices is usually nontrivial because the compositionality of information flow security properties should be properly treated. In this work, we present a new extension of interface automaton. On this interface structure, we propose two refinement-based security properties, adaptable to any finite security lattice. For each property, we present and prove the security condition that ensures the property to be preserved under composition. Furthermore, we implement the refinement algorithms and the security condition decision procedure. We demonstrate the usability and efficiency of our approach with in-depth case studies. The evaluation results show that our compositional enforcement can effectively reduce the verification cost compared with global verification on composite system.
Dynamic adaptation should not leave a software system in an inconsistent state, as it could lead to failure. Prior research has used inter-component dependency models of a system to determine a safe interval for the adaptation of its components, where the most important tradeoff is between disruption in the operations of the system and reachability of safe intervals. This article presents Savasana, which automatically analyzes a software system’s code to extract both inter- and intra-component dependencies. In this way, Savasana is able to obtain more fine-grained models compared to previous approaches. Savasana then uses the detailed models to find safe adaptation intervals that cannot be determined using techniques from prior research. This allows Savasana to achieve a better tradeoff between disruption and reachability. The article demonstrates how Savasana infers safe adaptation intervals for components of a software system under various use cases and conditions.
A self-adaptive software system should be able to monitor and analyze its runtime behavior and make adaptation decisions accordingly to meet certain desirable objectives. Traditional software adaptation techniques and recent “models@runtime” approaches usually require an a priori model for a system’s dynamic behavior. Oftentimes the model is difficult to define and labor-intensive to maintain, and tends to get out of date due to adaptation and architecture decay. We propose an alternative approach that does not require defining the system’s behavior model beforehand, but instead involves mining software component interactions from system execution traces to build a probabilistic usage model, which is in turn used to analyze, plan, and execute adaptations. Our preliminary evaluation of the approach against an Emergency Deployment System shows that the associations mining model can be used to effectively address a variety of adaptation needs, including (1) safely applying dynamic changes to a running software system without creating inconsistencies, (2) identifying potentially malicious (abnormal) behavior for self-protection, and (3) our ongoing research on improving deployment of software components in a distributed setting for performance self-optimization.