Biblio

Filters: Author is Xi, N.  [Clear All Filters]
2018-02-28
Sun, C., Xi, N., Ma, J..  2017.  Enforcing Generalized Refinement-Based Noninterference for Secure Interface Composition. 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC). 1:586–595.

Information flow security has been considered as a critical requirement on complicated component-based software. The recent efforts on the compositional information flow analyses were limited on the expressiveness of security lattice and the efficiency of compositional enforcement. Extending these approaches to support more general security lattices is usually nontrivial because the compositionality of information flow security properties should be properly treated. In this work, we present a new extension of interface automaton. On this interface structure, we propose two refinement-based security properties, adaptable to any finite security lattice. For each property, we present and prove the security condition that ensures the property to be preserved under composition. Furthermore, we implement the refinement algorithms and the security condition decision procedure. We demonstrate the usability and efficiency of our approach with in-depth case studies. The evaluation results show that our compositional enforcement can effectively reduce the verification cost compared with global verification on composite system.

2018-06-20
Li, T., Ma, J., Sun, C., Wei, D., Xi, N..  2017.  PVad: Privacy-Preserving Verification for Secure Routing in Ad Hoc Networks. 2017 International Conference on Networking and Network Applications (NaNA). :5–10.

Routing security has a great importance to the security of Mobile Ad Hoc Networks (MANETs). There are various kinds of attacks when establishing routing path between source and destination. The adversaries attempt to deceive the source node and get the privilege of data transmission. Then they try to launch the malicious behaviors such as passive or active attacks. Due to the characteristics of the MANETs, e.g. dynamic topology, open medium, distributed cooperation, and constrained capability, it is difficult to verify the behavior of nodes and detect malicious nodes without revealing any privacy. In this paper, we present PVad, an approach conducting privacy-preserving verification in the routing discovery phase of MANETs. PVad tries to find the existing communication rules by association rules instead of making the rules. PVad consists of two phases, a reasoning phase deducing the expected log data of the peers, and a verification phase using Merkle Hash Tree to verify the correctness of derived information without revealing any privacy of nodes on expected routing paths. Without deploying any special nodes to assist the verification, PVad can detect multiple malicious nodes by itself. To show our approach can be used to guarantee the security of the MANETs, we conduct our experiments in NS3 as well as the real router environment, and we improved the detection accuracy by 4% on average compared to our former work.