Biblio
Internet technology has made surveillance widespread and access to resources at greater ease than ever before. This implied boon has countless advantages. It however makes protecting privacy more challenging for the greater masses, and for the few hacktivists, supplies anonymity. The ever-increasing frequency and scale of cyber-attacks has not only crippled private organizations but has also left Law Enforcement Agencies(LEA's) in a fix: as data depicts a surge in cases relating to cyber-bullying, ransomware attacks; and the force not having adequate manpower to tackle such cases on a more microscopic level. The need is for a tool, an automated assistant which will help the security officers cut down precious time needed in the very first phase of information gathering: reconnaissance. Confronting the surface web along with the deep and dark web is not only a tedious job but which requires documenting the digital footprint of the perpetrator and identifying any Indicators of Compromise(IOC's). TORSION which automates web reconnaissance using the Open Source Intelligence paradigm, extracts the metadata from popular indexed social sites and un-indexed dark web onion sites, provided it has some relating Intel on the target. TORSION's workflow allows account matching from various top indexed sites, generating a dossier on the target, and exporting the collected metadata to a PDF file which can later be referenced.
Under the situation of regular epidemic prevention and control, teleworking has gradually become a normal working mode. With the development of modern information technologies such as big data, cloud computing and mobile Internet, it's become a problem that how to build an effective security defense system to ensure the information security of teleworking in complex network environment while ensuring the availability, collaboration and efficiency of teleworking. One of the solutions is Zero Trust Network(ZTN), most enterprise infrastructures will operate in a hybrid zero trust/perimeter-based mode while continuing to invest in IT modernization initiatives and improve organization business processes. In this paper, we have systematically studied the zero trust principles, the logical components of zero trust architecture and the key technology of zero trust network. Based on the abstract model of zero trust architecture and information security technologies, a prototype has been realized which suitable for iOS terminals to access enterprise resources safely in teleworking mode.
Static analyzers have become increasingly popular both as developer tools and as subjects of empirical studies. Whereas static analysis tools exist for disparate programming languages, the bulk of the empirical research has focused on the popular Java programming language. In this paper, we investigate to what extent some known results about using static analyzers for Java change when considering C\#-another popular object-oriented language. To this end, we combine two replications of previous Java studies. First, we study which static analysis tools are most widely used among C\# developers, and which warnings are more commonly reported by these tools on open-source C\# projects. Second, we develop and empirically evaluate EagleRepair: a technique to automatically fix code in response to static analysis warnings; this is a replication of our previous work for Java [20]. Our replication indicates, among other things, that 1) static code analysis is fairly popular among C\# developers too; 2) Re-Sharper is the most widely used static analyzer for C\#; 3) several static analysis rules are commonly violated in both Java and C\# projects; 4) automatically generating fixes to static code analysis warnings with good precision is feasible in C\#. The EagleRepair tool developed for this research is available as open source.
Unmanned Aerial Vehicles (UAVs) are drawing enormous attention in both commercial and military applications to facilitate dynamic wireless communications and deliver seamless connectivity due to their flexible deployment, inherent line-of-sight (LOS) air-to-ground (A2G) channels, and high mobility. These advantages, however, render UAV-enabled wireless communication systems susceptible to eavesdropping attempts. Hence, there is a strong need to protect the wireless channel through which most of the UAV-enabled applications share data with each other. There exist various error correction techniques such as Low Density Parity Check (LDPC), polar codes that provide safe and reliable data transmission by exploiting the physical layer but require high transmission power. Also, the security gap achieved by these error-correction techniques must be reduced to improve the security level. In this paper, we present deep learning (DL) enabled punctured LDPC codes to provide secure and reliable transmission of data for UAVs through the Additive White Gaussian Noise (AWGN) channel irrespective of the computational power and channel state information (CSI) of the Eavesdropper. Numerical result analysis shows that the proposed scheme reduces the Bit Error Rate (BER) at Bob effectively as compared to Eve and the Signal to Noise Ratio (SNR) per bit value of 3.5 dB is achieved at the maximum threshold value of BER. Also, the security gap is reduced by 47.22 % as compared to conventional LDPC codes.