Biblio
Some blockchain programs (smart contracts) have included serious security vulnerabilities. Obsidian is a new typestate-oriented programming language that uses a strong type system to rule out some of these vulnerabilities. Although Obsidian was designed to promote usability to make it as easy as possible to write programs, strong type systems can cause a language to be difficult to use. In particular, ownership, typestate, and assets, which Obsidian uses to provide safety guarantees, have not seen broad adoption together in popular languages and result in significant usability challenges. We performed an empirical study with 20 participants comparing Obsidian to Solidity, which is the language most commonly used for writing smart contracts today. We observed that Obsidian participants were able to successfully complete more of the programming tasks than the Solidity participants. We also found that the Solidity participants commonly inserted asset-related bugs, which Obsidian detects at compile time.
Blockchain platforms are coming into use for processing critical transactions among participants who have not established mutual trust. Many blockchains are programmable, supporting smart contracts, which maintain persistent state and support transactions that transform the state. Unfortunately, bugs in many smart contracts have been exploited by hackers. Obsidian is a novel programming language with a type system that enables static detection of bugs that are common in smart contracts today. Obsidian is based on a core calculus, Silica, for which we proved type soundness. Obsidian uses typestate to detect improper state manipulation and uses linear types to detect abuse of assets. We integrated a permissions system that encodes a notion of ownership to allow for safe, flexible aliasing. We describe two case studies that evaluate Obsidian’s applicability to the domains of parametric insurance and supply chain management, finding that Obsidian’s type system facilitates reasoning about high-level states and ownership of resources. We compared our Obsidian implementation to a Solidity implementation, observing that the Solidity implementation requires much boilerplate checking and tracking of state, whereas Obsidian does this work statically.
Unlike most social media, where automatic archiving of data is the default, Snapchat defaults to ephemerality: deleting content shortly after it is viewed by a receiver. Interviews with 25 Snapchat users show that ephemerality plays a key role in shaping their practices. Along with friend-adding features that facilitate a network of mostly close relations, default deletion affords everyday, mundane talk and reduces self-consciousness while encouraging playful interaction. Further, although receivers can save content through screenshots, senders are notified; this selective saving with notification supports complex information norms that preserve the feel of ephemeral communication while supporting the capture of meaningful content. This dance of giving and taking, sharing and showing, and agency for both senders and receivers provides the basis for a rich design space of mechanisms, levels, and domains for ephemerality.