Biblio

Filters: Keyword is automated planning  [Clear All Filters]
2023-01-30
Wohlrab, Rebekka, Cámara, Javier, Garlan, David, Schmerl, Bradley.  2022.  Explaining quality attribute tradeoffs in automated planning for self-adaptive systems. Journal of Systems and Software. 198

Self-adaptive systems commonly operate in heterogeneous contexts and need to consider multiple quality attributes. Human stakeholders often express their quality preferences by defining utility functions, which are used by self-adaptive systems to automatically generate adaptation plans. However, the adaptation space of realistic systems is large and it is obscure how utility functions impact the generated adaptation behavior, as well as structural, behavioral, and quality constraints. Moreover, human stakeholders are often not aware of the underlying tradeoffs between quality attributes. To address this issue, we present an approach that uses machine learning techniques (dimensionality reduction, clustering, and decision tree learning) to explain the reasoning behind automated planning. Our approach focuses on the tradeoffs between quality attributes and how the choice of weights in utility functions results in different plans being generated. We help humans understand quality attribute tradeoffs, identify key decisions in adaptation behavior, and explore how differences in utility functions result in different adaptation alternatives. We present two systems to demonstrate the approach’s applicability and consider its potential application to 24 exemplar self-adaptive systems. Moreover, we describe our assessment of the tradeoff between the information reduction and the amount of explained variance retained by the results obtained with our approach.

2017-09-05
Applebaum, Andy, Miller, Doug, Strom, Blake, Korban, Chris, Wolf, Ross.  2016.  Intelligent, Automated Red Team Emulation. Proceedings of the 32Nd Annual Conference on Computer Security Applications. :363–373.

Red teams play a critical part in assessing the security of a network by actively probing it for weakness and vulnerabilities. Unlike penetration testing - which is typically focused on exploiting vulnerabilities - red teams assess the entire state of a network by emulating real adversaries, including their techniques, tactics, procedures, and goals. Unfortunately, deploying red teams is prohibitive: cost, repeatability, and expertise all make it difficult to consistently employ red team tests. We seek to solve this problem by creating a framework for automated red team emulation, focused on what the red team does post-compromise - i.e., after the perimeter has been breached. Here, our program acts as an automated and intelligent red team, actively moving through the target network to test for weaknesses and train defenders. At its core, our framework uses an automated planner designed to accurately reason about future plans in the face of the vast amount of uncertainty in red teaming scenarios. Our solution is custom-developed, built on a logical encoding of the cyber environment and adversary profiles, using techniques from classical planning, Markov decision processes, and Monte Carlo simulations. In this paper, we report on the development of our framework, focusing on our planning system. We have successfully validated our planner against other techniques via a custom simulation. Our tool itself has successfully been deployed to identify vulnerabilities and is currently used to train defending blue teams.