Biblio

Found 433 results

Filters: Keyword is Neural networks  [Clear All Filters]
2021-01-28
Seiler, M., Trautmann, H., Kerschke, P..  2020.  Enhancing Resilience of Deep Learning Networks By Means of Transferable Adversaries. 2020 International Joint Conference on Neural Networks (IJCNN). :1—8.

Artificial neural networks in general and deep learning networks in particular established themselves as popular and powerful machine learning algorithms. While the often tremendous sizes of these networks are beneficial when solving complex tasks, the tremendous number of parameters also causes such networks to be vulnerable to malicious behavior such as adversarial perturbations. These perturbations can change a model's classification decision. Moreover, while single-step adversaries can easily be transferred from network to network, the transfer of more powerful multi-step adversaries has - usually - been rather difficult.In this work, we introduce a method for generating strong adversaries that can easily (and frequently) be transferred between different models. This method is then used to generate a large set of adversaries, based on which the effects of selected defense methods are experimentally assessed. At last, we introduce a novel, simple, yet effective approach to enhance the resilience of neural networks against adversaries and benchmark it against established defense methods. In contrast to the already existing methods, our proposed defense approach is much more efficient as it only requires a single additional forward-pass to achieve comparable performance results.

2021-03-09
Rahmati, A., Moosavi-Dezfooli, S.-M., Frossard, P., Dai, H..  2020.  GeoDA: A Geometric Framework for Black-Box Adversarial Attacks. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). :8443–8452.
Adversarial examples are known as carefully perturbed images fooling image classifiers. We propose a geometric framework to generate adversarial examples in one of the most challenging black-box settings where the adversary can only generate a small number of queries, each of them returning the top-1 label of the classifier. Our framework is based on the observation that the decision boundary of deep networks usually has a small mean curvature in the vicinity of data samples. We propose an effective iterative algorithm to generate query-efficient black-box perturbations with small p norms which is confirmed via experimental evaluations on state-of-the-art natural image classifiers. Moreover, for p=2, we theoretically show that our algorithm actually converges to the minimal perturbation when the curvature of the decision boundary is bounded. We also obtain the optimal distribution of the queries over the iterations of the algorithm. Finally, experimental results confirm that our principled black-box attack algorithm performs better than state-of-the-art algorithms as it generates smaller perturbations with a reduced number of queries.
2021-03-15
Babu, S. A., Ameer, P. M..  2020.  Physical Adversarial Attacks Against Deep Learning Based Channel Decoding Systems. 2020 IEEE Region 10 Symposium (TENSYMP). :1511–1514.

Deep Learning (DL), in spite of its huge success in many new fields, is extremely vulnerable to adversarial attacks. We demonstrate how an attacker applies physical white-box and black-box adversarial attacks to Channel decoding systems based on DL. We show that these attacks can affect the systems and decrease performance. We uncover that these attacks are more effective than conventional jamming attacks. Additionally, we show that classical decoding schemes are more robust than the deep learning channel decoding systems in the presence of both adversarial and jamming attacks.

2022-08-26
Spyros, Chatzivasileiadis.  2020.  From Decision Trees and Neural Networks to MILP: Power System Optimization Considering Dynamic Stability Constraints. 2020 European Control Conference (ECC). :594–594.
This work introduces methods that unlock a series of applications for decision trees and neural networks in power system optimization. Capturing constraints that were impossible to capture before in a scalable way, we use decision trees (or neural networks) to extract an accurate representation of the non-convex feasible region which is characterized by both algebraic and differential equations. Applying an exact transformation, we convert the information encoded in the decision trees and the neural networks to linear decision rules that we incorporate as conditional constraints in an optimization problem (MILP or MISOCP). Our approach introduces a framework to unify security considerations with electricity market operations, capturing not only steady-state but also dynamic stability constraints in power system optimization, and has the potential to eliminate redispatching costs, leading to savings of millions of euros per year.
2020-12-17
Iskhakov, A., Jharko, E..  2020.  Approach to Security Provision of Machine Vision for Unmanned Vehicles of “Smart City”. 2020 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). :1—5.

By analogy to nature, sight is the main integral component of robotic complexes, including unmanned vehicles. In this connection, one of the urgent tasks in the modern development of unmanned vehicles is the solution to the problem of providing security for new advanced systems, algorithms, methods, and principles of space navigation of robots. In the paper, we present an approach to the protection of machine vision systems based on technologies of deep learning. At the heart of the approach lies the “Feature Squeezing” method that works on the phase of model operation. It allows us to detect “adversarial” examples. Considering the urgency and importance of the target process, the features of unmanned vehicle hardware platforms and also the necessity of execution of tasks on detecting of the objects in real-time mode, it was offered to carry out an additional simple computational procedure of localization and classification of required objects in case of crossing a defined in advance threshold of “adversarial” object testing.

2021-03-29
Makovetskii, A., Kober, V., Voronin, A., Zhernov, D..  2020.  Facial recognition and 3D non-rigid registration. 2020 International Conference on Information Technology and Nanotechnology (ITNT). :1—4.

One of the most efficient tool for human face recognition is neural networks. However, the result of recognition can be spoiled by facial expressions and other deviation from the canonical face representation. In this paper, we propose a resampling method of human faces represented by 3D point clouds. The method is based on a non-rigid Iterative Closest Point (ICP) algorithm. To improve the facial recognition performance, we use a combination of the proposed method and convolutional neural network (CNN). Computer simulation results are provided to illustrate the performance of the proposed method.

2021-05-26
Boursinos, Dimitrios, Koutsoukos, Xenofon.  2020.  Trusted Confidence Bounds for Learning Enabled Cyber-Physical Systems. 2020 IEEE Security and Privacy Workshops (SPW). :228—233.

Cyber-physical systems (CPS) can benefit by the use of learning enabled components (LECs) such as deep neural networks (DNNs) for perception and decision making tasks. However, DNNs are typically non-transparent making reasoning about their predictions very difficult, and hence their application to safety-critical systems is very challenging. LECs could be integrated easier into CPS if their predictions could be complemented with a confidence measure that quantifies how much we trust their output. The paper presents an approach for computing confidence bounds based on Inductive Conformal Prediction (ICP). We train a Triplet Network architecture to learn representations of the input data that can be used to estimate the similarity between test examples and examples in the training data set. Then, these representations are used to estimate the confidence of set predictions from a classifier that is based on the neural network architecture used in the triplet. The approach is evaluated using a robotic navigation benchmark and the results show that we can computed trusted confidence bounds efficiently in real-time.

2021-08-02
S, Kanthimathi, Prathuri, Jhansi Rani.  2020.  Classification of Misbehaving nodes in MANETS using Machine Learning Techniques. 2020 2nd PhD Colloquium on Ethically Driven Innovation and Technology for Society (PhD EDITS). :1–2.
Classification of Misbehaving Nodes in wireless mobile adhoc networks (MANET) by applying machine learning techniques is an attempt to enhance security by detecting the presence of malicious nodes. MANETs are prone to many security vulnerabilities due to its significant features. The paper compares two machine learning techniques namely Support Vector Machine (SVM) and Back Propagation Neural Network (BPNN) and finds out the best technique to detect the misbehaving nodes. This paper is simulated with an on-demand routing protocol in NS2.35 and the results can be compared using parameters like packet Delivery Ratio (PDR), End-To-End delay, Average Throughput.
2021-07-27
Bao, Zhida, Zhao, Haojun.  2020.  Evaluation of Adversarial Attacks Based on DL in Communication Networks. 2020 7th International Conference on Dependable Systems and Their Applications (DSA). :251–252.
Deep Neural Networks (DNN) have strong capabilities of memories, feature identifications and automatic analyses, solving various complex problems. However, DNN classifiers have obvious fragility that adding several unnoticeable perturbations to the original examples will lead to the errors in the classifier identification. In the field of communications, the adversarial examples will greatly reduce the accuracy of the signal identification, causing great information security risks. Considering the adversarial examples pose a serious threat to the security of the DNN models, studying their generation mechanisms and testing their attack effects are critical to ensuring the information security of the communication networks. This paper will study the generation of the adversarial examples and the influences of the adversarial examples on the accuracy of the DNN-based communication signal identification. Meanwhile, this paper will study the influences of the adversarial examples under the white-box models and black-box models, and explore the adversarial attack influences of the factors such as perturbation levels and iterative steps. The insights of this study would be helpful for ensuring the security of information networks and designing robust DNN communication networks.
2022-11-08
HeydariGorji, Ali, Rezaei, Siavash, Torabzadehkashi, Mahdi, Bobarshad, Hossein, Alves, Vladimir, Chou, Pai H..  2020.  HyperTune: Dynamic Hyperparameter Tuning for Efficient Distribution of DNN Training Over Heterogeneous Systems. 2020 IEEE/ACM International Conference On Computer Aided Design (ICCAD). :1–8.
Distributed training is a novel approach to accelerating training of Deep Neural Networks (DNN), but common training libraries fall short of addressing the distributed nature of heterogeneous processors or interruption by other workloads on the shared processing nodes. This paper describes distributed training of DNN on computational storage devices (CSD), which are NAND flash-based, high-capacity data storage with internal processing engines. A CSD-based distributed architecture incorporates the advantages of federated learning in terms of performance scalability, resiliency, and data privacy by eliminating the unnecessary data movement between the storage device and the host processor. The paper also describes Stannis, a DNN training framework that improves on the shortcomings of existing distributed training frameworks by dynamically tuning the training hyperparameters in heterogeneous systems to maintain the maximum overall processing speed in term of processed images per second and energy efficiency. Experimental results on image classification training benchmarks show up to 3.1x improvement in performance and 2.45x reduction in energy consumption when using Stannis plus CSD compare to the generic systems.
2022-09-09
Yucheng, Zeng, Yongjiayou, Zeng, Yuhan, Zeng, Ruihan, Tao.  2020.  Research on the Evaluation of Supply Chain Financial Risk under the Domination of 3PL Based on BP Neural Network. 2020 2nd International Conference on Economic Management and Model Engineering (ICEMME). :886—893.
The rise of supply chain finance has provided effective assistance to SMEs with financing difficulties. This study mainly explores the financial risk evaluation of supply chain under the leadership of 3PL. According to the risk identification, 27 comprehensive rating indicators were established, and then the model under the BP neural network was constructed through empirical data. The actual verification results show that the model performs very well in risk assessment which helps 3PL companies to better evaluate the business risks of supply chain finance, so as to take more effective risk management measures.
2021-03-30
Ashiku, L., Dagli, C..  2020.  Agent Based Cybersecurity Model for Business Entity Risk Assessment. 2020 IEEE International Symposium on Systems Engineering (ISSE). :1—6.

Computer networks and surging advancements of innovative information technology construct a critical infrastructure for network transactions of business entities. Information exchange and data access though such infrastructure is scrutinized by adversaries for vulnerabilities that lead to cyber-attacks. This paper presents an agent-based system modelling to conceptualize and extract explicit and latent structure of the complex enterprise systems as well as human interactions within the system to determine common vulnerabilities of the entity. The model captures emergent behavior resulting from interactions of multiple network agents including the number of workstations, regular, administrator and third-party users, external and internal attacks, defense mechanisms for the network setting, and many other parameters. A risk-based approach to modelling cybersecurity of a business entity is utilized to derive the rate of attacks. A neural network model will generalize the type of attack based on network traffic features allowing dynamic state changes. Rules of engagement to generate self-organizing behavior will be leveraged to appoint a defense mechanism suitable for the attack-state of the model. The effectiveness of the model will be depicted by time-state chart that shows the number of affected assets for the different types of attacks triggered by the entity risk and the time it takes to revert into normal state. The model will also associate a relevant cost per incident occurrence that derives the need for enhancement of security solutions.

2021-03-04
Hashemi, M. J., Keller, E..  2020.  Enhancing Robustness Against Adversarial Examples in Network Intrusion Detection Systems. 2020 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN). :37—43.

The increase of cyber attacks in both the numbers and varieties in recent years demands to build a more sophisticated network intrusion detection system (NIDS). These NIDS perform better when they can monitor all the traffic traversing through the network like when being deployed on a Software-Defined Network (SDN). Because of the inability to detect zero-day attacks, signature-based NIDS which were traditionally used for detecting malicious traffic are beginning to get replaced by anomaly-based NIDS built on neural networks. However, recently it has been shown that such NIDS have their own drawback namely being vulnerable to the adversarial example attack. Moreover, they were mostly evaluated on the old datasets which don't represent the variety of attacks network systems might face these days. In this paper, we present Reconstruction from Partial Observation (RePO) as a new mechanism to build an NIDS with the help of denoising autoencoders capable of detecting different types of network attacks in a low false alert setting with an enhanced robustness against adversarial example attack. Our evaluation conducted on a dataset with a variety of network attacks shows denoising autoencoders can improve detection of malicious traffic by up to 29% in a normal setting and by up to 45% in an adversarial setting compared to other recently proposed anomaly detectors.

2021-04-27
Noh, S., Rhee, K.-H..  2020.  Implicit Authentication in Neural Key Exchange Based on the Randomization of the Public Blockchain. 2020 IEEE International Conference on Blockchain (Blockchain). :545—549.

A neural key exchange is a secret key exchange technique based on neural synchronization of the neural network. Since the neural key exchange is based on synchronizing weights within the neural network structure, the security of the algorithm does not depend on the attacker's computational capabilities. However, due to the neural key exchange's repetitive mutual-learning processes, using explicit user authentication methods -such as a public key certificate- is inefficient due to high communication overhead. Implicit authentication based on information that only authorized users know can significantly reduce overhead in communications. However, there was a lack of realistic methods to distribute secret information for authentication among authorized users. In this paper, we propose the concept idea of distributing shared secret values for implicit authentication based on the randomness of the public blockchain. Moreover, we present a method to prevent the unintentional disclosure of shared secret values to third parties in the network due to the transparency of the blockchain.

2021-03-09
Hegde, M., Kepnang, G., Mazroei, M. Al, Chavis, J. S., Watkins, L..  2020.  Identification of Botnet Activity in IoT Network Traffic Using Machine Learning. 2020 International Conference on Intelligent Data Science Technologies and Applications (IDSTA). :21—27.

Today our world benefits from Internet of Things (IoT) technology; however, new security problems arise when these IoT devices are introduced into our homes. Because many of these IoT devices have access to the Internet and they have little to no security, they make our smart homes highly vulnerable to compromise. Some of the threats include IoT botnets and generic confidentiality, integrity, and availability (CIA) attacks. Our research explores botnet detection by experimenting with supervised machine learning and deep-learning classifiers. Further, our approach assesses classifier performance on unbalanced datasets that contain benign data, mixed in with small amounts of malicious data. We demonstrate that the classifiers can separate malicious activity from benign activity within a small IoT network dataset. The classifiers can also separate malicious activity from benign activity in increasingly larger datasets. Our experiments have demonstrated incremental improvement in results for (1) accuracy, (2) probability of detection, and (3) probability of false alarm. The best performance results include 99.9% accuracy, 99.8% probability of detection, and 0% probability of false alarm. This paper also demonstrates how the performance of these classifiers increases, as IoT training datasets become larger and larger.

2021-06-24
Habib ur Rehman, Muhammad, Mukhtar Dirir, Ahmed, Salah, Khaled, Svetinovic, Davor.  2020.  FairFed: Cross-Device Fair Federated Learning. 2020 IEEE Applied Imagery Pattern Recognition Workshop (AIPR). :1–7.
Federated learning (FL) is the rapidly developing machine learning technique that is used to perform collaborative model training over decentralized datasets. FL enables privacy-preserving model development whereby the datasets are scattered over a large set of data producers (i.e., devices and/or systems). These data producers train the learning models, encapsulate the model updates with differential privacy techniques, and share them to centralized systems for global aggregation. However, these centralized models are always prone to adversarial attacks (such as data-poisoning and model poisoning attacks) due to a large number of data producers. Hence, FL methods need to ensure fairness and high-quality model availability across all the participants in the underlying AI systems. In this paper, we propose a novel FL framework, called FairFed, to meet fairness and high-quality data requirements. The FairFed provides a fairness mechanism to detect adversaries across the devices and datasets in the FL network and reject their model updates. We use a Python-simulated FL framework to enable large-scale training over MNIST dataset. We simulate a cross-device model training settings to detect adversaries in the training network. We used TensorFlow Federated and Python to implement the fairness protocol, the deep neural network, and the outlier detection algorithm. We thoroughly test the proposed FairFed framework with random and uniform data distributions across the training network and compare our initial results with the baseline fairness scheme. Our proposed work shows promising results in terms of model accuracy and loss.
2021-11-29
Ma, Chuang, You, Haisheng, Wang, Li, Zhang, Jiajun.  2020.  Intelligent Cybersecurity Situational Awareness Model Based on Deep Neural Network. 2020 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC). :76–83.
In recent years, we have faced a series of online threats. The continuous malicious attacks on the network have directly caused a huge threat to the user's spirit and property. In order to deal with the complex security situation in today's network environment, an intelligent network situational awareness model based on deep neural networks is proposed. Use the nonlinear characteristics of the deep neural network to solve the nonlinear fitting problem, establish a network security situation assessment system, take the situation indicators output by the situation assessment system as a guide, and collect on the main data features according to the characteristics of the network attack method, the main data features are collected and the data is preprocessed. This model designs and trains a 4-layer neural network model, and then use the trained deep neural network model to understand and analyze the network situation data, so as to build the network situation perception model based on deep neural network. The deep neural network situational awareness model designed in this paper is used as a network situational awareness simulation attack prediction experiment. At the same time, it is compared with the perception model using gray theory and Support Vector Machine(SVM). The experiments show that this model can make perception according to the changes of state characteristics of network situation data, establish understanding through learning, and finally achieve accurate prediction of network attacks. Through comparison experiments, datatypized neural network deep neural network situation perception model is proved to be effective, accurate and superior.
2021-09-21
Khan, Mamoona, Baig, Duaa, Khan, Usman Shahid, Karim, Ahmad.  2020.  Malware Classification Framework Using Convolutional Neural Network. 2020 International Conference on Cyber Warfare and Security (ICCWS). :1–7.
Cyber-security is facing a huge threat from malware and malware mass production due to its mutation factors. Classification of malware by their features is necessary for the security of information technology (IT) society. To provide security from malware, deep neural networks (DNN) can offer a superior solution for the detection and categorization of malware samples by using image classification techniques. To strengthen our ideology of malware classification through image recognition, we have experimented by comparing two perspectives of malware classification. The first perspective implements dense neural networks on binary files and the other applies deep layered convolutional neural network on malware images. The proposed model is trained to a set of malware samples, which are further distributed into 9 different families. The dataset of malware samples which is used in this paper is provided by Microsoft for Microsoft Malware Classification Challenge in 2015. The proposed model shows an accuracy of 97.80% on the provided dataset. By using the proposed model optimum classifications results can be attained.
2021-09-30
Ren, Xun-yi, Luo, Qi-qi, Shi, Chen, Huang, Jia-ming.  2020.  Network Security Posture Prediction Based on SAPSO-Elman Neural Networks. 2020 International Conference on Artificial Intelligence and Computer Engineering (ICAICE). :533–537.
With the increasing popularity of the Internet, mobile Internet and the Internet of Things, the current network environment continues to become more complicated. Due to the increasing variety and severity of cybersecurity threats, traditional means of network security protection have ushered in a huge challenge. The network security posture prediction can effectively predict the network development trend in the future time based on the collected network history data, so this paper proposes an algorithm based on simulated annealing-particle swarm algorithm to optimize improved Elman neural network parameters to achieve posture prediction for network security. Taking advantage of the characteristic that the value of network security posture has periodicity, a simulated annealing algorithm is introduced along with an improved particle swarm algorithm to solve the problem that neural network training is prone to fall into a local optimal solution and achieve accurate prediction of the network security posture. Comparison of the proposed scheme with existing prediction methods validates that the scheme has a good posture prediction accuracy.
2022-10-13
Singh, Shweta, Singh, M.P., Pandey, Ramprakash.  2020.  Phishing Detection from URLs Using Deep Learning Approach. 2020 5th International Conference on Computing, Communication and Security (ICCCS). :1—4.
Today, the Internet covers worldwide. All over the world, people prefer an E-commerce platform to buy or sell their products. Therefore, cybercrime has become the center of attraction for cyber attackers in cyberspace. Phishing is one such technique where the unidentified structure of the Internet has been used by attackers/criminals that intend to deceive users with the use of the illusory website and emails for obtaining their credentials (like account numbers, passwords, and PINs). Consequently, the identification of a phishing or legitimate web page is a challenging issue due to its semantic structure. In this paper, a phishing detection system is implemented using deep learning techniques to prevent such attacks. The system works on URLs by applying a convolutional neural network (CNN) to detect the phishing webpage. In paper [19] the proposed model has achieved 97.98% accuracy whereas our proposed system achieved accuracy of 98.00% which is better than earlier model. This system doesn’t require any feature engineering as the CNN extract features from the URLs automatically through its hidden layers. This is other advantage of the proposed system over earlier reported in [19] as the feature engineering is a very time-consuming task.
2022-11-08
Boo, Yoonho, Shin, Sungho, Sung, Wonyong.  2020.  Quantized Neural Networks: Characterization and Holistic Optimization. 2020 IEEE Workshop on Signal Processing Systems (SiPS). :1–6.
Quantized deep neural networks (QDNNs) are necessary for low-power, high throughput, and embedded applications. Previous studies mostly focused on developing optimization methods for the quantization of given models. However, quantization sensitivity depends on the model architecture. Also, the characteristics of weight and activation quantization are quite different. This study proposes a holistic approach for the optimization of QDNNs, which contains QDNN training methods as well as quantization-friendly architecture design. Synthesized data is used to visualize the effects of weight and activation quantization. The results indicate that deeper models are more prone to activation quantization, while wider models improve the resiliency to both weight and activation quantization.
2021-09-30
Pan, Zhicheng, Deng, Jun, Chu, Jinwei, Zhang, Zhanlong, Dong, Zijian.  2020.  Research on Correlation Analysis of Vibration Signals at Multiple Measuring Points and Black Box Model of Flexible-DC Transformer. 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2). :3238–3242.
The internal structure of the flexible-DC transformer is complicated and the lack of a reliable vibration calculation model limits the application of the vibration analysis method in the fault diagnosis of the flexible-DC transformer. In response to this problem, this paper analyzes the correlation between the vibration signals of multiple measuring points and establishes a ``black box'' model of transformer vibration detection. Using the correlation analysis of multiple measuring points and BP neural network, a ``black box'' model that simulates the internal vibration transmission relationship of the transformer is established. The vibration signal of the multiple measuring points can be used to calculate the vibration signal of the target measuring point under specific working conditions. This can provide effective information for fault diagnosis and judgment of the running status of the flexible-DC transformer.
2021-03-29
Zhou, J., Zhang, X., Liu, Y., Lan, X..  2020.  Facial Expression Recognition Using Spatial-Temporal Semantic Graph Network. 2020 IEEE International Conference on Image Processing (ICIP). :1961—1965.

Motions of facial components convey significant information of facial expressions. Although remarkable advancement has been made, the dynamic of facial topology has not been fully exploited. In this paper, a novel facial expression recognition (FER) algorithm called Spatial Temporal Semantic Graph Network (STSGN) is proposed to automatically learn spatial and temporal patterns through end-to-end feature learning from facial topology structure. The proposed algorithm not only has greater discriminative power to capture the dynamic patterns of facial expression and stronger generalization capability to handle different variations but also higher interpretability. Experimental evaluation on two popular datasets, CK+ and Oulu-CASIA, shows that our algorithm achieves more competitive results than other state-of-the-art methods.

2021-06-30
Zhao, Yi, Jia, Xian, An, Dou, Yang, Qingyu.  2020.  LSTM-Based False Data Injection Attack Detection in Smart Grids. 2020 35th Youth Academic Annual Conference of Chinese Association of Automation (YAC). :638—644.
As a typical cyber-physical system, smart grid has attracted growing attention due to the safe and efficient operation. The false data injection attack against energy management system is a new type of cyber-physical attack, which can bypass the bad data detector of the smart grid to influence the results of state estimation directly, causing the energy management system making wrong estimation and thus affects the stable operation of power grid. We transform the false data injection attack detection problem into binary classification problem in this paper, which use the long-term and short-term memory network (LSTM) to construct the detection model. After that, we use the BP algorithm to update neural network parameters and utilize the dropout method to alleviate the overfitting problem and to improve the detection accuracy. Simulation results prove that the LSTM-based detection method can achieve higher detection accuracy comparing with the BPNN-based approach.
Wang, Chenguang, Pan, Kaikai, Tindemans, Simon, Palensky, Peter.  2020.  Training Strategies for Autoencoder-based Detection of False Data Injection Attacks. 2020 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe). :1—5.
The security of energy supply in a power grid critically depends on the ability to accurately estimate the state of the system. However, manipulated power flow measurements can potentially hide overloads and bypass the bad data detection scheme to interfere the validity of estimated states. In this paper, we use an autoencoder neural network to detect anomalous system states and investigate the impact of hyperparameters on the detection performance for false data injection attacks that target power flows. Experimental results on the IEEE 118 bus system indicate that the proposed mechanism has the ability to achieve satisfactory learning efficiency and detection accuracy.