Biblio

Found 433 results

Filters: Keyword is Neural networks  [Clear All Filters]
2021-05-25
Cai, Feiyang, Li, Jiani, Koutsoukos, Xenofon.  2020.  Detecting Adversarial Examples in Learning-Enabled Cyber-Physical Systems using Variational Autoencoder for Regression. 2020 IEEE Security and Privacy Workshops (SPW). :208–214.

Learning-enabled components (LECs) are widely used in cyber-physical systems (CPS) since they can handle the uncertainty and variability of the environment and increase the level of autonomy. However, it has been shown that LECs such as deep neural networks (DNN) are not robust and adversarial examples can cause the model to make a false prediction. The paper considers the problem of efficiently detecting adversarial examples in LECs used for regression in CPS. The proposed approach is based on inductive conformal prediction and uses a regression model based on variational autoencoder. The architecture allows to take into consideration both the input and the neural network prediction for detecting adversarial, and more generally, out-of-distribution examples. We demonstrate the method using an advanced emergency braking system implemented in an open source simulator for self-driving cars where a DNN is used to estimate the distance to an obstacle. The simulation results show that the method can effectively detect adversarial examples with a short detection delay.

2021-03-29
Oğuz, K., Korkmaz, İ, Korkmaz, B., Akkaya, G., Alıcı, C., Kılıç, E..  2020.  Effect of Age and Gender on Facial Emotion Recognition. 2020 Innovations in Intelligent Systems and Applications Conference (ASYU). :1—6.

New research fields and applications on human computer interaction will emerge based on the recognition of emotions on faces. With such aim, our study evaluates the features extracted from faces to recognize emotions. To increase the success rate of these features, we have run several tests to demonstrate how age and gender affect the results. The artificial neural networks were trained by the apparent regions on the face such as eyes, eyebrows, nose, mouth, and jawline and then the networks are tested with different age and gender groups. According to the results, faces of older people have a lower performance rate of emotion recognition. Then, age and gender based groups are created manually, and we show that performance rates of facial emotion recognition have increased for the networks that are trained using these particular groups.

2021-05-13
Monakhov, Yuri, Monakhov, Mikhail, Telny, Andrey, Mazurok, Dmitry, Kuznetsova, Anna.  2020.  Improving Security of Neural Networks in the Identification Module of Decision Support Systems. 2020 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT). :571–574.
In recent years, neural networks have been implemented while solving various tasks. Deep learning algorithms provide state of the art performance in computer vision, NLP, speech recognition, speaker recognition and many other fields. In spite of the good performance, neural networks have significant drawback- they have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. While being imperceptible to a human eye, such perturbations lead to significant drop in classification accuracy. It is demonstrated by many studies related to neural network security. Considering the pros and cons of neural networks, as well as a variety of their applications, developing of the methods to improve the robustness of neural networks against adversarial attacks becomes an urgent task. In the article authors propose the “minimalistic” attacker model of the decision support system identification unit, adaptive recommendations on security enhancing, and a set of protective methods. Suggested methods allow for significant increase in classification accuracy under adversarial attacks, as it is demonstrated by an experiment outlined in this article.
2020-12-14
Chen, X., Cao, C., Mai, J..  2020.  Network Anomaly Detection Based on Deep Support Vector Data Description. 2020 5th IEEE International Conference on Big Data Analytics (ICBDA). :251–255.
Intrusion detection system based on representation learning is the main research direction in the field of anomaly detection. Malicious traffic detection system can distinguish normal and malicious traffic by learning representations between normal and malicious traffic. However, under the context of big data, there are many types of malicious traffic, and the features are also changing constantly. It is still a urgent problem to design a detection model that can effectively learn and summarize the feature of normal traffic and accurately identify the features of new kinds of malicious traffic.in this paper, a malicious traffic detection method based on Deep Support Vector Data Description is proposed, which is called Deep - SVDD. We combine convolutional neural network (CNN) with support vector data description, and train the model with normal traffic. The normal traffic features are mapped to high-dimensional space through neural networks, and a compact hypersphere is trained by unsupervised learning, which includes the normal features of the highdimensional space. Malicious traffic fall outside the hypersphere, thus distinguishing between normal and malicious traffic. Experiments show that the model has a high detection rate and a low false alarm rate, and it can effectively identify new malicious traffic.
2021-05-13
Sheng, Mingren, Liu, Hongri, Yang, Xu, Wang, Wei, Huang, Junheng, Wang, Bailing.  2020.  Network Security Situation Prediction in Software Defined Networking Data Plane. 2020 IEEE International Conference on Advances in Electrical Engineering and Computer Applications( AEECA). :475–479.
Software-Defined Networking (SDN) simplifies network management by separating the control plane from the data forwarding plane. However, the plane separation technology introduces many new loopholes in the SDN data plane. In order to facilitate taking proactive measures to reduce the damage degree of network security events, this paper proposes a security situation prediction method based on particle swarm optimization algorithm and long-short-term memory neural network for network security events on the SDN data plane. According to the statistical information of the security incident, the analytic hierarchy process is used to calculate the SDN data plane security situation risk value. Then use the historical data of the security situation risk value to build an artificial neural network prediction model. Finally, a prediction model is used to predict the future security situation risk value. Experiments show that this method has good prediction accuracy and stability.
2021-03-04
Wang, Y., Wang, Z., Xie, Z., Zhao, N., Chen, J., Zhang, W., Sui, K., Pei, D..  2020.  Practical and White-Box Anomaly Detection through Unsupervised and Active Learning. 2020 29th International Conference on Computer Communications and Networks (ICCCN). :1—9.

To ensure quality of service and user experience, large Internet companies often monitor various Key Performance Indicators (KPIs) of their systems so that they can detect anomalies and identify failure in real time. However, due to a large number of various KPIs and the lack of high-quality labels, existing KPI anomaly detection approaches either perform well only on certain types of KPIs or consume excessive resources. Therefore, to realize generic and practical KPI anomaly detection in the real world, we propose a KPI anomaly detection framework named iRRCF-Active, which contains an unsupervised and white-box anomaly detector based on Robust Random Cut Forest (RRCF), and an active learning component. Specifically, we novelly propose an improved RRCF (iRRCF) algorithm to overcome the drawbacks of applying original RRCF in KPI anomaly detection. Besides, we also incorporate the idea of active learning to make our model benefit from high-quality labels given by experienced operators. We conduct extensive experiments on a large-scale public dataset and a private dataset collected from a large commercial bank. The experimental resulta demonstrate that iRRCF-Active performs better than existing traditional statistical methods, unsupervised learning methods and supervised learning methods. Besides, each component in iRRCF-Active has also been demonstrated to be effective and indispensable.

2021-03-30
Li, Y., Ji, X., Li, C., Xu, X., Yan, W., Yan, X., Chen, Y., Xu, W..  2020.  Cross-domain Anomaly Detection for Power Industrial Control System. 2020 IEEE 10th International Conference on Electronics Information and Emergency Communication (ICEIEC). :383—386.

In recent years, artificial intelligence has been widely used in the field of network security, which has significantly improved the effect of network security analysis and detection. However, because the power industrial control system is faced with the problem of shortage of attack data, the direct deployment of the network intrusion detection system based on artificial intelligence is faced with the problems of lack of data, low precision, and high false alarm rate. To solve this problem, we propose an anomaly traffic detection method based on cross-domain knowledge transferring. By using the TrAdaBoost algorithm, we achieve a lower error rate than using LSTM alone.

2021-07-27
Kim, Hyeji, Jiang, Yihan, Kannan, Sreeram, Oh, Sewoong, Viswanath, Pramod.  2020.  Deepcode: Feedback Codes via Deep Learning. IEEE Journal on Selected Areas in Information Theory. 1:194—206.
The design of codes for communicating reliably over a statistically well defined channel is an important endeavor involving deep mathematical research and wide-ranging practical applications. In this work, we present the first family of codes obtained via deep learning, which significantly outperforms state-of-the-art codes designed over several decades of research. The communication channel under consideration is the Gaussian noise channel with feedback, whose study was initiated by Shannon; feedback is known theoretically to improve reliability of communication, but no practical codes that do so have ever been successfully constructed. We break this logjam by integrating information theoretic insights harmoniously with recurrent-neural-network based encoders and decoders to create novel codes that outperform known codes by 3 orders of magnitude in reliability and achieve a 3dB gain in terms of SNR. We also demonstrate several desirable properties of the codes: (a) generalization to larger block lengths, (b) composability with known codes, and (c) adaptation to practical constraints. This result also has broader ramifications for coding theory: even when the channel has a clear mathematical model, deep learning methodologies, when combined with channel-specific information-theoretic insights, can potentially beat state-of-the-art codes constructed over decades of mathematical research.
2021-09-30
Latif, Shahid, Idrees, Zeba, Zou, Zhuo, Ahmad, Jawad.  2020.  DRaNN: A Deep Random Neural Network Model for Intrusion Detection in Industrial IoT. 2020 International Conference on UK-China Emerging Technologies (UCET). :1–4.
Industrial Internet of Things (IIoT) has arisen as an emerging trend in the industrial sector. Millions of sensors present in IIoT networks generate a massive amount of data that can open the doors for several cyber-attacks. An intrusion detection system (IDS) monitors real-time internet traffic and identify the behavior and type of network attacks. In this paper, we presented a deep random neural (DRaNN) based scheme for intrusion detection in IIoT. The proposed scheme is evaluated by using a new generation IIoT security dataset UNSW-NB15. Experimental results prove that the proposed model successfully classified nine different types of attacks with a low false-positive rate and great accuracy of 99.54%. To validate the feasibility of the proposed scheme, experimental results are also compared with state-of-the-art deep learning-based intrusion detection schemes. The proposed model achieved a higher attack detection rate of 99.41%.
2021-04-08
Ayub, M. A., Continella, A., Siraj, A..  2020.  An I/O Request Packet (IRP) Driven Effective Ransomware Detection Scheme using Artificial Neural Network. 2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science (IRI). :319–324.
In recent times, there has been a global surge of ransomware attacks targeted at industries of various types and sizes from retail to critical infrastructure. Ransomware researchers are constantly coming across new kinds of ransomware samples every day and discovering novel ransomware families out in the wild. To mitigate this ever-growing menace, academia and industry-based security researchers have been utilizing unique ways to defend against this type of cyber-attacks. I/O Request Packet (IRP), a low-level file system I/O log, is a newly found research paradigm for defense against ransomware that is being explored frequently. As such in this study, to learn granular level, actionable insights of ransomware behavior, we analyze the IRP logs of 272 ransomware samples belonging to 18 different ransomware families captured during individual execution. We further our analysis by building an effective Artificial Neural Network (ANN) structure for successful ransomware detection by learning the underlying patterns of the IRP logs. We evaluate the ANN model with three different experimental settings to prove the effectiveness of our approach. The model demonstrates outstanding performance in terms of accuracy, precision score, recall score, and F1 score, i.e., in the range of 99.7%±0.2%.
2021-01-11
Gautam, A., Singh, S..  2020.  A Comparative Analysis of Deep Learning based Super-Resolution Techniques for Thermal Videos. 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT). :919—925.

Video streams acquired from thermal cameras are proven to be beneficial in diverse number of fields including military, healthcare, law enforcement, and security. Despite the hype, thermal imaging is increasingly affected by poor resolution, where it has expensive optical sensors and inability to attain optical precision. In recent years, deep learning based super-resolution algorithms are developed to enhance the video frame resolution at high accuracy. This paper presents a comparative analysis of super resolution (SR) techniques based on deep neural networks (DNN) that are applied on thermal video dataset. SRCNN, EDSR, Auto-encoder, and SRGAN are also discussed and investigated. Further the results on benchmark thermal datasets including FLIR, OSU thermal pedestrian database and OSU color thermal database are evaluated and analyzed. Based on the experimental results, it is concluded that, SRGAN has delivered a superior performance on thermal frames when compared to other techniques and improvements, which has the ability to provide state-of-the art performance in real time operations.

2021-09-30
Peng, Cheng, Yongli, Wang, Boyi, Yao, Yuanyuan, Huang, Jiazhong, Lu, Qiao, Peng.  2020.  Cyber Security Situational Awareness Jointly Utilizing Ball K-Means and RBF Neural Networks. 2020 17th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP). :261–265.
Low accuracy and slow speed of predictions for cyber security situational awareness. This paper proposes a network security situational awareness model based on accelerated accurate k-means radial basis function (RBF) neural network, the model uses the ball k-means clustering algorithm to cluster the input samples, to get the nodes of the hidden layer of the RBF neural network, speeding up the selection of the initial center point of the RBF neural network, and optimize the parameters of the RBF neural network structure. Finally, use the training data set to train the neural network, using the test data set to test the accuracy of this neural network structure, the results show that this method has a greater improvement in training speed and accuracy than other neural networks.
2022-06-06
Uchida, Hikaru, Matsubara, Masaki, Wakabayashi, Kei, Morishima, Atsuyuki.  2020.  Human-in-the-loop Approach towards Dual Process AI Decisions. 2020 IEEE International Conference on Big Data (Big Data). :3096–3098.
How to develop AI systems that can explain how they made decisions is one of the important and hot topics today. Inspired by the dual-process theory in psychology, this paper proposes a human-in-the-loop approach to develop System-2 AI that makes an inference logically and outputs interpretable explanation. Our proposed method first asks crowd workers to raise understandable features of objects of multiple classes and collect training data from the Internet to generate classifiers for the features. Logical decision rules with the set of generated classifiers can explain why each object is of a particular class. In our preliminary experiment, we applied our method to an image classification of Asian national flags and examined the effectiveness and issues of our method. In our future studies, we plan to combine the System-2 AI with System-1 AI (e.g., neural networks) to efficiently output decisions.
2021-06-28
Li, Meng, Zhong, Qi, Zhang, Leo Yu, Du, Yajuan, Zhang, Jun, Xiang, Yong.  2020.  Protecting the Intellectual Property of Deep Neural Networks with Watermarking: The Frequency Domain Approach. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :402–409.
Similar to other digital assets, deep neural network (DNN) models could suffer from piracy threat initiated by insider and/or outsider adversaries due to their inherent commercial value. DNN watermarking is a promising technique to mitigate this threat to intellectual property. This work focuses on black-box DNN watermarking, with which an owner can only verify his ownership by issuing special trigger queries to a remote suspicious model. However, informed attackers, who are aware of the watermark and somehow obtain the triggers, could forge fake triggers to claim their ownerships since the poor robustness of triggers and the lack of correlation between the model and the owner identity. This consideration calls for new watermarking methods that can achieve better trade-off for addressing the discrepancy. In this paper, we exploit frequency domain image watermarking to generate triggers and build our DNN watermarking algorithm accordingly. Since watermarking in the frequency domain is high concealment and robust to signal processing operation, the proposed algorithm is superior to existing schemes in resisting fraudulent claim attack. Besides, extensive experimental results on 3 datasets and 8 neural networks demonstrate that the proposed DNN watermarking algorithm achieves similar performance on functionality metrics and better performance on security metrics when compared with existing algorithms.
2021-05-03
Naik, Nikhil, Nuzzo, Pierluigi.  2020.  Robustness Contracts for Scalable Verification of Neural Network-Enabled Cyber-Physical Systems. 2020 18th ACM-IEEE International Conference on Formal Methods and Models for System Design (MEMOCODE). :1–12.
The proliferation of artificial intelligence based systems in all walks of life raises concerns about their safety and robustness, especially for cyber-physical systems including multiple machine learning components. In this paper, we introduce robustness contracts as a framework for compositional specification and reasoning about the robustness of cyber-physical systems based on neural network (NN) components. Robustness contracts can encompass and generalize a variety of notions of robustness which were previously proposed in the literature. They can seamlessly apply to NN-based perception as well as deep reinforcement learning (RL)-enabled control applications. We present a sound and complete algorithm that can efficiently verify the satisfaction of a class of robustness contracts on NNs by leveraging notions from Lagrangian duality to identify system configurations that violate the contracts. We illustrate the effectiveness of our approach on the verification of NN-based perception systems and deep RL-based control systems.
2021-11-30
Cultice, Tyler, Ionel, Dan, Thapliyal, Himanshu.  2020.  Smart Home Sensor Anomaly Detection Using Convolutional Autoencoder Neural Network. 2020 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS). :67–70.
We propose an autoencoder based approach to anomaly detection in smart grid systems. Data collecting sensors within smart home systems are susceptible to many data corruption issues, such as malicious attacks or physical malfunctions. By applying machine learning to a smart home or grid, sensor anomalies can be detected automatically for secure data collection and sensor-based system functionality. In addition, we tested the effectiveness of this approach on real smart home sensor data collected for multiple years. An early detection of such data corruption issues is essential to the security and functionality of the various sensors and devices within a smart home.
2021-01-28
Esmeel, T. K., Hasan, M. M., Kabir, M. N., Firdaus, A..  2020.  Balancing Data Utility versus Information Loss in Data-Privacy Protection using k-Anonymity. 2020 IEEE 8th Conference on Systems, Process and Control (ICSPC). :158—161.

Data privacy has been an important area of research in recent years. Dataset often consists of sensitive data fields, exposure of which may jeopardize interests of individuals associated with the data. In order to resolve this issue, privacy techniques can be used to hinder the identification of a person through anonymization of the sensitive data in the dataset to protect sensitive information, while the anonymized dataset can be used by the third parties for analysis purposes without obstruction. In this research, we investigated a privacy technique, k-anonymity for different values of on different number columns of the dataset. Next, the information loss due to k-anonymity is computed. The anonymized files go through the classification process by some machine-learning algorithms i.e., Naive Bayes, J48 and neural network in order to check a balance between data anonymity and data utility. Based on the classification accuracy, the optimal values of and are obtained, and thus, the optimal and can be used for k-anonymity algorithm to anonymize optimal number of columns of the dataset.

2021-10-04
Liu, Yuan, Zhou, Pingqiang.  2020.  Defending Against Adversarial Attacks in Deep Learning with Robust Auxiliary Classifiers Utilizing Bit Plane Slicing. 2020 Asian Hardware Oriented Security and Trust Symposium (AsianHOST). :1–4.
Deep Neural Networks (DNNs) have been widely used in variety of fields with great success. However, recent researches indicate that DNNs are susceptible to adversarial attacks, which can easily fool the well-trained DNNs without being detected by human eyes. In this paper, we propose to combine the target DNN model with robust bit plane classifiers to defend against adversarial attacks. It comes from our finding that successful attacks generate imperceptible perturbations, which mainly affects the low-order bits of pixel value in clean images. Hence, using bit planes instead of traditional RGB channels for convolution can effectively reduce channel modification rate. We conduct experiments on dataset CIFAR-10 and GTSRB. The results show that our defense method can effectively increase the model accuracy on average from 8.72% to 85.99% under attacks on CIFAR-10 without sacrificina accuracy of clean images.
2021-03-30
Tai, J., Alsmadi, I., Zhang, Y., Qiao, F..  2020.  Machine Learning Methods for Anomaly Detection in Industrial Control Systems. 2020 IEEE International Conference on Big Data (Big Data). :2333—2339.

This paper examines multiple machine learning models to find the model that best indicates anomalous activity in an industrial control system that is under a software-based attack. The researched machine learning models are Random Forest, Gradient Boosting Machine, Artificial Neural Network, and Recurrent Neural Network classifiers built-in Python and tested against the HIL-based Augmented ICS dataset. Although the results showed that Random Forest, Gradient Boosting Machine, Artificial Neural Network, and Long Short-Term Memory classification models have great potential for anomaly detection in industrial control systems, we found that Random Forest with tuned hyperparameters slightly outperformed the other models.

2021-02-23
Hartpence, B., Kwasinski, A..  2020.  Combating TCP Port Scan Attacks Using Sequential Neural Networks. 2020 International Conference on Computing, Networking and Communications (ICNC). :256—260.

Port scans are a persistent problem on contemporary communication networks. Typically used as an attack reconnaissance tool, they can also create problems with application performance and throughput. This paper describes an architecture that deploys sequential neural networks (NNs) to classify packets, separate TCP datagrams, determine the type of TCP packet and detect port scans. Sequential networks allow this lengthy task to learn from the current environment and to be broken up into component parts. Following classification, analysis is performed in order to discover scan attempts. We show that neural networks can be used to successfully classify general packetized traffic at recognition rates above 99% and more complex TCP classes at rates that are also above 99%. We demonstrate that this specific communications task can successfully be broken up into smaller work loads. When tested against actual NMAP scan pcap files, this model successfully discovers open ports and the scan attempts with the same high percentage and low false positives.

2021-01-15
Gandhi, A., Jain, S..  2020.  Adversarial Perturbations Fool Deepfake Detectors. 2020 International Joint Conference on Neural Networks (IJCNN). :1—8.
This work uses adversarial perturbations to enhance deepfake images and fool common deepfake detectors. We created adversarial perturbations using the Fast Gradient Sign Method and the Carlini and Wagner L2 norm attack in both blackbox and whitebox settings. Detectors achieved over 95% accuracy on unperturbed deepfakes, but less than 27% accuracy on perturbed deepfakes. We also explore two improvements to deep-fake detectors: (i) Lipschitz regularization, and (ii) Deep Image Prior (DIP). Lipschitz regularization constrains the gradient of the detector with respect to the input in order to increase robustness to input perturbations. The DIP defense removes perturbations using generative convolutional neural networks in an unsupervised manner. Regularization improved the detection of perturbed deepfakes on average, including a 10% accuracy boost in the blackbox case. The DIP defense achieved 95% accuracy on perturbed deepfakes that fooled the original detector while retaining 98% accuracy in other cases on a 100 image subsample.
2021-02-23
Xia, H., Gao, N., Peng, J., Mo, J., Wang, J..  2020.  Binarized Attributed Network Embedding via Neural Networks. 2020 International Joint Conference on Neural Networks (IJCNN). :1—8.
Traditional attributed network embedding methods are designed to map structural and attribute information of networks jointly into a continuous Euclidean space, while recently a novel branch of them named binarized attributed network embedding has emerged to learn binary codes in Hamming space, aiming to save time and memory costs and to naturally fit node retrieval task. However, current binarized attributed network embedding methods are scarce and mostly ignore the local attribute similarity between each pair of nodes. Besides, none of them attempt to control the independency of each dimension(bit) of the learned binary representation vectors. As existing methods still need improving, we propose an unsupervised Neural-based Binarized Attributed Network Embedding (NBANE) approach. Firstly, we inherit the Weisfeiler-Lehman proximity matrix from predecessors to aggregate high-order features for each node. Secondly, we feed the aggregated features into an autoencoder with the attribute similarity penalizing term and the orthogonality term to make further dimension reduction. To solve the problem of integer optimization we adopt the relaxation-quantization method during the process of training neural networks. Empirically, we evaluate the performance of NBANE through node classification and clustering tasks on three real-world datasets and study a case on fast retrieval in academic networks. Our method achieves better performance over state- of-the-art baselines methods of various types.
2021-09-07
Vamsi, G Krishna, Rasool, Akhtar, Hajela, Gaurav.  2020.  Chatbot: A Deep Neural Network Based Human to Machine Conversation Model. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–7.
A conversational agent (chatbot) is computer software capable of communicating with humans using natural language processing. The crucial part of building any chatbot is the development of conversation. Despite many developments in Natural Language Processing (NLP) and Artificial Intelligence (AI), creating a good chatbot model remains a significant challenge in this field even today. A conversational bot can be used for countless errands. In general, they need to understand the user's intent and deliver appropriate replies. This is a software program of a conversational interface that allows a user to converse in the same manner one would address a human. Hence, these are used in almost every customer communication platform, like social networks. At present, there are two basic models used in developing a chatbot. Generative based models and Retrieval based models. The recent advancements in deep learning and artificial intelligence, such as the end-to-end trainable neural networks have rapidly replaced earlier methods based on hand-written instructions and patterns or statistical methods. This paper proposes a new method of creating a chatbot using a deep neural learning method. In this method, a neural network with multiple layers is built to learn and process the data.
2020-12-28
Raju, R. S., Lipasti, M..  2020.  BlurNet: Defense by Filtering the Feature Maps. 2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W). :38—46.

Recently, the field of adversarial machine learning has been garnering attention by showing that state-of-the-art deep neural networks are vulnerable to adversarial examples, stemming from small perturbations being added to the input image. Adversarial examples are generated by a malicious adversary by obtaining access to the model parameters, such as gradient information, to alter the input or by attacking a substitute model and transferring those malicious examples over to attack the victim model. Specifically, one of these attack algorithms, Robust Physical Perturbations (RP2), generates adversarial images of stop signs with black and white stickers to achieve high targeted misclassification rates against standard-architecture traffic sign classifiers. In this paper, we propose BlurNet, a defense against the RP2 attack. First, we motivate the defense with a frequency analysis of the first layer feature maps of the network on the LISA dataset, which shows that high frequency noise is introduced into the input image by the RP2 algorithm. To remove the high frequency noise, we introduce a depthwise convolution layer of standard blur kernels after the first layer. We perform a blackbox transfer attack to show that low-pass filtering the feature maps is more beneficial than filtering the input. We then present various regularization schemes to incorporate this lowpass filtering behavior into the training regime of the network and perform white-box attacks. We conclude with an adaptive attack evaluation to show that the success rate of the attack drops from 90% to 20% with total variation regularization, one of the proposed defenses.

2021-03-18
Bi, X., Liu, X..  2020.  Chinese Character Captcha Sequential Selection System Based on Convolutional Neural Network. 2020 International Conference on Computer Vision, Image and Deep Learning (CVIDL). :554—559.

To ensure security, Completely Automated Public Turing test to tell Computers and Humans Apart (CAPTCHA) is widely used in people's online lives. This paper presents a Chinese character captcha sequential selection system based on convolutional neural network (CNN). Captchas composed of English and digits can already be identified with extremely high accuracy, but Chinese character captcha recognition is still challenging. The task we need to complete is to identify Chinese characters with different colors and different fonts that are not on a straight line with rotation and affine transformation on pictures with complex backgrounds, and then perform word order restoration on the identified Chinese characters. We divide the task into several sub-processes: Chinese character detection based on Faster R-CNN, Chinese character recognition and word order recovery based on N-Gram. In the Chinese character recognition sub-process, we have made outstanding contributions. We constructed a single Chinese character data set and built a 10-layer convolutional neural network. Eventually we achieved an accuracy of 98.43%, and completed the task perfectly.