Biblio

Found 433 results

Filters: Keyword is Neural networks  [Clear All Filters]
2023-04-14
Yang, Xiaoran, Guo, Zhen, Mai, Zetian.  2022.  Botnet Detection Based on Machine Learning. 2022 International Conference on Blockchain Technology and Information Security (ICBCTIS). :213–217.
A botnet is a new type of attack method developed and integrated on the basis of traditional malicious code such as network worms and backdoor tools, and it is extremely threatening. This course combines deep learning and neural network methods in machine learning methods to detect and classify the existence of botnets. This sample does not rely on any prior features, the final multi-class classification accuracy rate is higher than 98.7%, the effect is significant.
2023-09-18
Jia, Jingyun, Chan, Philip K..  2022.  Representation Learning with Function Call Graph Transformations for Malware Open Set Recognition. 2022 International Joint Conference on Neural Networks (IJCNN). :1—8.
Open set recognition (OSR) problem has been a challenge in many machine learning (ML) applications, such as security. As new/unknown malware families occur regularly, it is difficult to exhaust samples that cover all the classes for the training process in ML systems. An advanced malware classification system should classify the known classes correctly while sensitive to the unknown class. In this paper, we introduce a self-supervised pre-training approach for the OSR problem in malware classification. We propose two transformations for the function call graph (FCG) based malware representations to facilitate the pretext task. Also, we present a statistical thresholding approach to find the optimal threshold for the unknown class. Moreover, the experiment results indicate that our proposed pre-training process can improve different performances of different downstream loss functions for the OSR problem.
2023-03-31
Kahla, Mostafa, Chen, Si, Just, Hoang Anh, Jia, Ruoxi.  2022.  Label-Only Model Inversion Attacks via Boundary Repulsion. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). :15025–15033.
Recent studies show that the state-of-the-art deep neural networks are vulnerable to model inversion attacks, in which access to a model is abused to reconstruct private training data of any given target class. Existing attacks rely on having access to either the complete target model (whitebox) or the model's soft-labels (blackbox). However, no prior work has been done in the harder but more practical scenario, in which the attacker only has access to the model's predicted label, without a confidence measure. In this paper, we introduce an algorithm, Boundary-Repelling Model Inversion (BREP-MI), to invert private training data using only the target model's predicted labels. The key idea of our algorithm is to evaluate the model's predicted labels over a sphere and then estimate the direction to reach the target class's centroid. Using the example of face recognition, we show that the images reconstructed by BREP-MI successfully reproduce the semantics of the private training data for various datasets and target model architectures. We compare BREP-MI with the state-of-the-art white-box and blackbox model inversion attacks, and the results show that despite assuming less knowledge about the target model, BREP-MI outperforms the blackbox attack and achieves comparable results to the whitebox attack. Our code is available online.11https://github.com/m-kahla/Label-Only-Model-Inversion-Attacks-via-Boundary-Repulsion
2023-01-06
Chen, Tianlong, Zhang, Zhenyu, Zhang, Yihua, Chang, Shiyu, Liu, Sijia, Wang, Zhangyang.  2022.  Quarantine: Sparsity Can Uncover the Trojan Attack Trigger for Free. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). :588—599.
Trojan attacks threaten deep neural networks (DNNs) by poisoning them to behave normally on most samples, yet to produce manipulated results for inputs attached with a particular trigger. Several works attempt to detect whether a given DNN has been injected with a specific trigger during the training. In a parallel line of research, the lottery ticket hypothesis reveals the existence of sparse sub-networks which are capable of reaching competitive performance as the dense network after independent training. Connecting these two dots, we investigate the problem of Trojan DNN detection from the brand new lens of sparsity, even when no clean training data is available. Our crucial observation is that the Trojan features are significantly more stable to network pruning than benign features. Leveraging that, we propose a novel Trojan network detection regime: first locating a “winning Trojan lottery ticket” which preserves nearly full Trojan information yet only chance-level performance on clean inputs; then recovering the trigger embedded in this already isolated sub-network. Extensive experiments on various datasets, i.e., CIFAR-10, CIFAR-100, and ImageNet, with different network architectures, i.e., VGG-16, ResNet-18, ResNet-20s, and DenseNet-100 demonstrate the effectiveness of our proposal. Codes are available at https://github.com/VITA-Group/Backdoor-LTH.
2022-12-23
Huo, Da, Li, Xiaoyong, Li, Linghui, Gao, Yali, Li, Ximing, Yuan, Jie.  2022.  The Application of 1D-CNN in Microsoft Malware Detection. 2022 7th International Conference on Big Data Analytics (ICBDA). :181–187.
In the computer field, cybersecurity has always been the focus of attention. How to detect malware is one of the focuses and difficulties in network security research effectively. Traditional existing malware detection schemes can be mainly divided into two methods categories: database matching and the machine learning method. With the rise of deep learning, more and more deep learning methods are applied in the field of malware detection. Deeper semantic features can be extracted via deep neural network. The main tasks of this paper are as follows: (1) Using machine learning methods and one-dimensional convolutional neural networks to detect malware (2) Propose a machine The method of combining learning and deep learning is used for detection. Machine learning uses LGBM to obtain an accuracy rate of 67.16%, and one-dimensional CNN obtains an accuracy rate of 72.47%. In (2), LGBM is used to screen the importance of features and then use a one-dimensional convolutional neural network, which helps to further improve the detection result has an accuracy rate of 78.64%.
2023-04-28
Chen, Ligeng, He, Zhongling, Wu, Hao, Xu, Fengyuan, Qian, Yi, Mao, Bing.  2022.  DIComP: Lightweight Data-Driven Inference of Binary Compiler Provenance with High Accuracy. 2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER). :112–122.
Binary analysis is pervasively utilized to assess software security and test vulnerabilities without accessing source codes. The analysis validity is heavily influenced by the inferring ability of information related to the code compilation. Among the compilation information, compiler type and optimization level, as the key factors determining how binaries look like, are still difficult to be inferred efficiently with existing tools. In this paper, we conduct a thorough empirical study on the binary's appearance under various compilation settings and propose a lightweight binary analysis tool based on the simplest machine learning method, called DIComP to infer the compiler and optimization level via most relevant features according to the observation. Our comprehensive evaluations demonstrate that DIComP can fully recognize the compiler provenance, and it is effective in inferring the optimization levels with up to 90% accuracy. Also, it is efficient to infer thousands of binaries at a millisecond level with our lightweight machine learning model (1MB).
2023-01-05
Jaimes, Luis G., Calderon, Juan, Shriver, Scott, Hendricks, Antonio, Lozada, Javier, Seenith, Sivasundaram, Chintakunta, Harish.  2022.  A Generative Adversarial Approach for Sybil Attacks Recognition for Vehicular Crowdsensing. 2022 International Conference on Connected Vehicle and Expo (ICCVE). :1–7.
Vehicular crowdsensing (VCS) is a subset of crowd-sensing where data collection is outsourced to group vehicles. Here, an entity interested in collecting data from a set of Places of Sensing Interest (PsI), advertises a set of sensing tasks, and the associated rewards. Vehicles attracted by the offered rewards deviate from their ongoing trajectories to visit and collect from one or more PsI. In this win-to-win scenario, vehicles reach their final destination with the extra reward, and the entity obtains the desired samples. Unfortunately, the efficiency of VCS can be undermined by the Sybil attack, in which an attacker can benefit from the injection of false vehicle identities. In this paper, we present a case study and analyze the effects of such an attack. We also propose a defense mechanism based on generative adversarial neural networks (GANs). We discuss GANs' advantages, and drawbacks in the context of VCS, and new trends in GANs' training that make them suitable for VCS.
2023-02-17
Vélez, Tatiana Castro, Khatchadourian, Raffi, Bagherzadeh, Mehdi, Raja, Anita.  2022.  Challenges in Migrating Imperative Deep Learning Programs to Graph Execution: An Empirical Study. 2022 IEEE/ACM 19th International Conference on Mining Software Repositories (MSR). :469–481.
Efficiency is essential to support responsiveness w.r.t. ever-growing datasets, especially for Deep Learning (DL) systems. DL frameworks have traditionally embraced deferred execution-style DL code that supports symbolic, graph-based Deep Neural Network (DNN) computation. While scalable, such development tends to produce DL code that is error-prone, non-intuitive, and difficult to debug. Consequently, more natural, less error-prone imperative DL frameworks encouraging eager execution have emerged at the expense of run-time performance. While hybrid approaches aim for the “best of both worlds,” the challenges in applying them in the real world are largely unknown. We conduct a data-driven analysis of challenges-and resultant bugs-involved in writing reliable yet performant imperative DL code by studying 250 open-source projects, consisting of 19.7 MLOC, along with 470 and 446 manually examined code patches and bug reports, respectively. The results indicate that hybridization: (i) is prone to API misuse, (ii) can result in performance degradation-the opposite of its intention, and (iii) has limited application due to execution mode incompatibility. We put forth several recommendations, best practices, and anti-patterns for effectively hybridizing imperative DL code, potentially benefiting DL practitioners, API designers, tool developers, and educators.
ISSN: 2574-3864
2022-12-20
Rakin, Adnan Siraj, Chowdhuryy, Md Hafizul Islam, Yao, Fan, Fan, Deliang.  2022.  DeepSteal: Advanced Model Extractions Leveraging Efficient Weight Stealing in Memories. 2022 IEEE Symposium on Security and Privacy (SP). :1157–1174.
Recent advancements in Deep Neural Networks (DNNs) have enabled widespread deployment in multiple security-sensitive domains. The need for resource-intensive training and the use of valuable domain-specific training data have made these models the top intellectual property (IP) for model owners. One of the major threats to DNN privacy is model extraction attacks where adversaries attempt to steal sensitive information in DNN models. In this work, we propose an advanced model extraction framework DeepSteal that steals DNN weights remotely for the first time with the aid of a memory side-channel attack. Our proposed DeepSteal comprises two key stages. Firstly, we develop a new weight bit information extraction method, called HammerLeak, through adopting the rowhammer-based fault technique as the information leakage vector. HammerLeak leverages several novel system-level techniques tailored for DNN applications to enable fast and efficient weight stealing. Secondly, we propose a novel substitute model training algorithm with Mean Clustering weight penalty, which leverages the partial leaked bit information effectively and generates a substitute prototype of the target victim model. We evaluate the proposed model extraction framework on three popular image datasets (e.g., CIFAR-10/100/GTSRB) and four DNN architectures (e.g., ResNet-18/34/Wide-ResNetNGG-11). The extracted substitute model has successfully achieved more than 90% test accuracy on deep residual networks for the CIFAR-10 dataset. Moreover, our extracted substitute model could also generate effective adversarial input samples to fool the victim model. Notably, it achieves similar performance (i.e., 1-2% test accuracy under attack) as white-box adversarial input attack (e.g., PGD/Trades).
ISSN: 2375-1207
2023-01-13
Zhang, Xing, Chen, Jiongyi, Feng, Chao, Li, Ruilin, Diao, Wenrui, Zhang, Kehuan, Lei, Jing, Tang, Chaojing.  2022.  Default: Mutual Information-based Crash Triage for Massive Crashes. 2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE). :635—646.
With the considerable success achieved by modern fuzzing in-frastructures, more crashes are produced than ever before. To dig out the root cause, rapid and faithful crash triage for large numbers of crashes has always been attractive. However, hindered by the practical difficulty of reducing analysis imprecision without compromising efficiency, this goal has not been accomplished. In this paper, we present an end-to-end crash triage solution Default, for accurately and quickly pinpointing unique root cause from large numbers of crashes. In particular, we quantify the “crash relevance” of program entities based on mutual information, which serves as the criterion of unique crash bucketing and allows us to bucket massive crashes without pre-analyzing their root cause. The quantification of “crash relevance” is also used in the shortening of long crashing traces. On this basis, we use the interpretability of neural networks to precisely pinpoint the root cause in the shortened traces by evaluating each basic block's impact on the crash label. Evaluated with 20 programs with 22216 crashes in total, Default demonstrates remarkable accuracy and performance, which is way beyond what the state-of-the-art techniques can achieve: crash de-duplication was achieved at a super-fast processing speed - 0.017 seconds per crashing trace, without missing any unique bugs. After that, it identifies the root cause of 43 unique crashes with no false negatives and an average false positive rate of 9.2%.
2022-12-20
Li, Fang-Qi, Wang, Shi-Lin, Zhu, Yun.  2022.  Fostering The Robustness Of White-Box Deep Neural Network Watermarks By Neuron Alignment. ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :3049–3053.
The wide application of deep learning techniques is boosting the regulation of deep learning models, especially deep neural networks (DNN), as commercial products. A necessary prerequisite for such regulations is identifying the owner of deep neural networks, which is usually done through the watermark. Current DNN watermarking schemes, particularly white-box ones, are uniformly fragile against a family of functionality equivalence attacks, especially the neuron permutation. This operation can effortlessly invalidate the ownership proof and escape copyright regulations. To enhance the robustness of white-box DNN watermarking schemes, this paper presents a procedure that aligns neurons into the same order as when the watermark is embedded, so the watermark can be correctly recognized. This neuron alignment process significantly facilitates the functionality of established deep neural network watermarking schemes.
2023-07-21
Churaev, Egor, Savchenko, Andrey V..  2022.  Multi-user facial emotion recognition in video based on user-dependent neural network adaptation. 2022 VIII International Conference on Information Technology and Nanotechnology (ITNT). :1—5.
In this paper, the multi-user video-based facial emotion recognition is examined in the presence of a small data set with the emotions of end users. By using the idea of speaker-dependent speech recognition, we propose a novel approach to solve this task if labeled video data from end users is available. During the training stage, a deep convolutional neural network is trained for user-independent emotion classification. Next, this classifier is adapted (fine-tuned) on the emotional video of a concrete person. During the recognition stage, the user is identified based on face recognition techniques, and an emotional model of the recognized user is applied. It is experimentally shown that this approach improves the accuracy of emotion recognition by more than 20% for the RAVDESS dataset.
2023-02-17
Ryndyuk, V. A., Varakin, Y. S., Pisarenko, E. A..  2022.  New Architecture of Transformer Networks for Generating Natural Dialogues. 2022 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF). :1–5.
The new architecture of transformer networks proposed in the work can be used to create an intelligent chat bot that can learn the process of communication and immediately model responses based on what has been said. The essence of the new mechanism is to divide the information flow into two branches containing the history of the dialogue with different levels of granularity. Such a mechanism makes it possible to build and develop the personality of a dialogue agent in the process of dialogue, that is, to accurately imitate the natural behavior of a person. This gives the interlocutor (client) the feeling of talking to a real person. In addition, making modifications to the structure of such a network makes it possible to identify a likely attack using social engineering methods. The results obtained after training the created system showed the fundamental possibility of using a neural network of a new architecture to generate responses close to natural ones. Possible options for using such neural network dialogue agents in various fields, and, in particular, in information security systems, are considered. Possible options for using such neural network dialogue agents in various fields, and, in particular, in information security systems, are considered. The new technology can be used in social engineering attack detection systems, which is a big problem at present. The novelty and prospects of the proposed architecture of the neural network also lies in the possibility of creating on its basis dialogue systems with a high level of biological plausibility.
ISSN: 2769-3538
2022-12-20
Lin, Xuanwei, Dong, Chen, Liu, Ximeng, Zhang, Yuanyuan.  2022.  SPA: An Efficient Adversarial Attack on Spiking Neural Networks using Spike Probabilistic. 2022 22nd IEEE International Symposium on Cluster, Cloud and Internet Computing (CCGrid). :366–375.
With the future 6G era, spiking neural networks (SNNs) can be powerful processing tools in various areas due to their strong artificial intelligence (AI) processing capabilities, such as biometric recognition, AI robotics, autonomous drive, and healthcare. However, within Cyber Physical System (CPS), SNNs are surprisingly vulnerable to adversarial examples generated by benign samples with human-imperceptible noise, this will lead to serious consequences such as face recognition anomalies, autonomous drive-out of control, and wrong medical diagnosis. Only by fully understanding the principles of adversarial attacks with adversarial samples can we defend against them. Nowadays, most existing adversarial attacks result in a severe accuracy degradation to trained SNNs. Still, the critical issue is that they only generate adversarial samples by randomly adding, deleting, and flipping spike trains, making them easy to identify by filters, even by human eyes. Besides, the attack performance and speed also can be improved further. Hence, Spike Probabilistic Attack (SPA) is presented in this paper and aims to generate adversarial samples with more minor perturbations, greater model accuracy degradation, and faster iteration. SPA uses Poisson coding to generate spikes as probabilities, directly converting input data into spikes for faster speed and generating uniformly distributed perturbation for better attack performance. Moreover, an objective function is constructed for minor perturbations and keeping attack success rate, which speeds up the convergence by adjusting parameters. Both white-box and black-box settings are conducted to evaluate the merits of SPA. Experimental results show the model's accuracy under white-box attack decreases by 9.2S% 31.1S% better than others, and average success rates are 74.87% under the black-box setting. The experimental results indicate that SPA has better attack performance than other existing attacks in the white-box and better transferability performance in the black-box setting,
2023-03-17
Dhasade, Akash, Dresevic, Nevena, Kermarrec, Anne-Marie, Pires, Rafael.  2022.  TEE-based decentralized recommender systems: The raw data sharing redemption. 2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS). :447–458.
Recommenders are central in many applications today. The most effective recommendation schemes, such as those based on collaborative filtering (CF), exploit similarities between user profiles to make recommendations, but potentially expose private data. Federated learning and decentralized learning systems address this by letting the data stay on user's machines to preserve privacy: each user performs the training on local data and only the model parameters are shared. However, sharing the model parameters across the network may still yield privacy breaches. In this paper, we present Rex, the first enclave-based decentralized CF recommender. Rex exploits Trusted execution environments (TEE), such as Intel software guard extensions (SGX), that provide shielded environments within the processor to improve convergence while preserving privacy. Firstly, Rex enables raw data sharing, which ultimately speeds up convergence and reduces the network load. Secondly, Rex fully preserves privacy. We analyze the impact of raw data sharing in both deep neural network (DNN) and matrix factorization (MF) recommenders and showcase the benefits of trusted environments in a full-fledged implementation of Rex. Our experimental results demonstrate that through raw data sharing, Rex significantly decreases the training time by 18.3 x and the network load by 2 orders of magnitude over standard decentralized approaches that share only parameters, while fully protecting privacy by leveraging trustworthy hardware enclaves with very little overhead.
ISSN: 1530-2075
2023-02-24
Golam, Mohtasin, Akter, Rubina, Naufal, Revin, Doan, Van-Sang, Lee, Jae-Min, Kim, Dong-Seong.  2022.  Blockchain Inspired Intruder UAV Localization Using Lightweight CNN for Internet of Battlefield Things. MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM). :342—349.
On the Internet of Battlefield Things (IoBT), unmanned aerial vehicles (UAVs) provide significant operational advantages. However, the exploitation of the UAV by an untrustworthy entity might lead to security violations or possibly the destruction of crucial IoBT network functionality. The IoBT system has substantial issues related to data tampering and fabrication through illegal access. This paper proposes the use of an intelligent architecture called IoBT-Net, which is built on a convolution neural network (CNN) and connected with blockchain technology, to identify and trace illicit UAV in the IoBT system. Data storage on the blockchain ledger is protected from unauthorized access, data tampering, and invasions. Conveniently, this paper presents a low complexity and robustly performed CNN called LRCANet to estimate AOA for object localization. The proposed LRCANet is efficiently designed with two core modules, called GFPU and stacks, which are cleverly organized with regular and point convolution layers, a max pool layer, and a ReLU layer associated with residual connectivity. Furthermore, the effectiveness of LRCANET is evaluated by various network and array configurations, RMSE, and compared with the accuracy and complexity of the existing state-of-the-art. Additionally, the implementation of tailored drone-based consensus is evaluated in terms of three major classes and compared with the other existing consensus.
2023-07-21
Shiqi, Li, Yinghui, Han.  2022.  Detection of Bad Data and False Data Injection Based on Back-Propagation Neural Network. 2022 IEEE PES Innovative Smart Grid Technologies - Asia (ISGT Asia). :101—105.
Power system state estimation is an essential tool for monitoring the operating conditions of the grid. However, the collected measurements may not always be reliable due to bad data from various faults as well as the increasing potential of being exposed to cyber-attacks, particularly from data injection attacks. To enhance the accuracy of state estimation, this paper presents a back-propagation neural network to detect and identify bad data and false data injections. A variety of training data exhibiting different statistical properties were used for training. The developed strategy was tested on the IEEE 30-bus and 118-bus power systems using MATLAB. Simulation results revealed the feasibility of the method for the detection and differentiation of bad data and false data injections in various operating scenarios.
2023-06-29
Wang, Zhichao.  2022.  Deep Learning Methods for Fake News Detection. 2022 IEEE 2nd International Conference on Data Science and Computer Application (ICDSCA). :472–475.

Nowadays, although it is much more convenient to obtain news with social media and various news platforms, the emergence of all kinds of fake news has become a headache and urgent problem that needs to be solved. Currently, the fake news recognition algorithm for fake news mainly uses GCN, including some other niche algorithms such as GRU, CNN, etc. Although all fake news verification algorithms can reach quite a high accuracy with sufficient datasets, there is still room for improvement for unsupervised learning and semi-supervised. This article finds that the accuracy of the GCN method for fake news detection is basically about 85% through comparison with other neural network models, which is satisfactory, and proposes that the current field lacks a unified training dataset, and that in the future fake news detection models should focus more on semi-supervised learning and unsupervised learning.

2023-03-31
Bassit, Amina, Hahn, Florian, Veldhuis, Raymond, Peter, Andreas.  2022.  Multiplication-Free Biometric Recognition for Faster Processing under Encryption. 2022 IEEE International Joint Conference on Biometrics (IJCB). :1–9.

The cutting-edge biometric recognition systems extract distinctive feature vectors of biometric samples using deep neural networks to measure the amount of (dis-)similarity between two biometric samples. Studies have shown that personal information (e.g., health condition, ethnicity, etc.) can be inferred, and biometric samples can be reconstructed from those feature vectors, making their protection an urgent necessity. State-of-the-art biometrics protection solutions are based on homomorphic encryption (HE) to perform recognition over encrypted feature vectors, hiding the features and their processing while releasing the outcome only. However, this comes at the cost of those solutions' efficiency due to the inefficiency of HE-based solutions with a large number of multiplications; for (dis-)similarity measures, this number is proportional to the vector's dimension. In this paper, we tackle the HE performance bottleneck by freeing the two common (dis-)similarity measures, the cosine similarity and the squared Euclidean distance, from multiplications. Assuming normalized feature vectors, our approach pre-computes and organizes those (dis-)similarity measures into lookup tables. This transforms their computation into simple table-lookups and summation only. We study quantization parameters for the values in the lookup tables and evaluate performances on both synthetic and facial feature vectors for which we achieve a recognition performance identical to the non-tabularized baseline systems. We then assess their efficiency under HE and record runtimes between 28.95ms and 59.35ms for the three security levels, demonstrating their enhanced speed.

ISSN: 2474-9699

2023-04-28
Deng, Zijie, Feng, Guocong, Huang, Qingshui, Zou, Hong, Zhang, Jiafa.  2022.  Research on Enterprise Information Security Risk Assessment System Based on Bayesian Neural Network. 2022 IEEE 2nd International Conference on Data Science and Computer Application (ICDSCA). :938–941.
Information security construction is a social issue, and the most urgent task is to do an excellent job in information risk assessment. The bayesian neural network currently plays a vital role in enterprise information security risk assessment, which overcomes the subjective defects of traditional assessment results and operates efficiently. The risk quantification method based on fuzzy theory and Bayesian regularization BP neural network mainly uses fuzzy theory to process the original data and uses the processed data as the input value of the neural network, which can effectively reduce the ambiguity of language description. At the same time, special neural network training is carried out for the confusion that the neural network is easy to fall into the optimal local problem. Finally, the risk is verified and quantified through experimental simulation. This paper mainly discusses the problem of enterprise information security risk assessment based on a Bayesian neural network, hoping to provide strong technical support for enterprises and organizations to carry out risk rectification plans. Therefore, the above method provides a new information security risk assessment idea.
2023-06-23
Ke, Zehui, Huang, Hailiang, Liang, Yingwei, Ding, Yi, Cheng, Xin, Wu, Qingyao.  2022.  Robust Video watermarking based on deep neural network and curriculum learning. 2022 IEEE International Conference on e-Business Engineering (ICEBE). :80–85.

With the rapid development of multimedia and short video, there is a growing concern for video copyright protection. Some work has been proposed to add some copyright or fingerprint information to the video to trace the source of the video when it is stolen and protect video copyright. This paper proposes a video watermarking method based on a deep neural network and curriculum learning for watermarking of sliced videos. The first frame of the segmented video is perturbed by an encoder network, which is invisible and can be distinguished by the decoder network. Our model is trained and tested on an online educational video dataset consisting of 2000 different video clips. Experimental results show that our method can successfully discriminate most watermarked and non-watermarked videos with low visual disturbance, which can be achieved even under a relatively high video compression rate(H.264 video compress with CRF 32).

2023-03-03
Tiwari, Aditya, Sengar, Neha, Yadav, Vrinda.  2022.  Next Word Prediction Using Deep Learning. 2022 IEEE Global Conference on Computing, Power and Communication Technologies (GlobConPT). :1–6.
Next Word Prediction involves guessing the next word which is most likely to come after the current word. The system suggests a few words. A user can choose a word according to their choice from a list of suggested word by system. It increases typing speed and reduces keystrokes of the user. It is also useful for disabled people to enter text slowly and for those who are not good with spellings. Previous studies focused on prediction of the next word in different languages. Some of them are Bangla, Assamese, Ukraine, Kurdish, English, and Hindi. According to Census 2011, 43.63% of the Indian population uses Hindi, the national language of India. In this work, deep learning techniques are proposed to predict the next word in Hindi language. The paper uses Long Short Term Memory and Bidirectional Long Short Term Memory as the base neural network architecture. The model proposed in this work outperformed the existing approaches and achieved the best accuracy among neural network based approaches on IITB English-Hindi parallel corpus.
2022-04-25
Hussain, Shehzeen, Neekhara, Paarth, Jere, Malhar, Koushanfar, Farinaz, McAuley, Julian.  2021.  Adversarial Deepfakes: Evaluating Vulnerability of Deepfake Detectors to Adversarial Examples. 2021 IEEE Winter Conference on Applications of Computer Vision (WACV). :3347–3356.
Recent advances in video manipulation techniques have made the generation of fake videos more accessible than ever before. Manipulated videos can fuel disinformation and reduce trust in media. Therefore detection of fake videos has garnered immense interest in academia and industry. Recently developed Deepfake detection methods rely on Deep Neural Networks (DNNs) to distinguish AI-generated fake videos from real videos. In this work, we demonstrate that it is possible to bypass such detectors by adversarially modifying fake videos synthesized using existing Deepfake generation methods. We further demonstrate that our adversarial perturbations are robust to image and video compression codecs, making them a real-world threat. We present pipelines in both white-box and black-box attack scenarios that can fool DNN based Deepfake detectors into classifying fake videos as real.
2022-07-12
Özdemir, Durmuş, Çelik, Dilek.  2021.  Analysis of Encrypted Image Data with Deep Learning Models. 2021 International Conference on Information Security and Cryptology (ISCTURKEY). :121—126.
While various encryption algorithms ensure data security, it is essential to determine the accuracy and loss values and performance status in the analyzes made to determine encrypted data by deep learning. In this research, the analysis steps made by applying deep learning methods to encrypted cifar10 picture data are presented practically. The data was tried to be estimated by training with VGG16, VGG19, ResNet50 deep learning models. During this period, the network’s performance was tried to be measured, and the accuracy and loss values in these calculations were shown graphically.
2022-07-15
Fan, Wenqi, Derr, Tyler, Zhao, Xiangyu, Ma, Yao, Liu, Hui, Wang, Jianping, Tang, Jiliang, Li, Qing.  2021.  Attacking Black-box Recommendations via Copying Cross-domain User Profiles. 2021 IEEE 37th International Conference on Data Engineering (ICDE). :1583—1594.
Recommender systems, which aim to suggest personalized lists of items for users, have drawn a lot of attention. In fact, many of these state-of-the-art recommender systems have been built on deep neural networks (DNNs). Recent studies have shown that these deep neural networks are vulnerable to attacks, such as data poisoning, which generate fake users to promote a selected set of items. Correspondingly, effective defense strategies have been developed to detect these generated users with fake profiles. Thus, new strategies of creating more ‘realistic’ user profiles to promote a set of items should be investigated to further understand the vulnerability of DNNs based recommender systems. In this work, we present a novel framework CopyAttack. It is a reinforcement learning based black-box attacking method that harnesses real users from a source domain by copying their profiles into the target domain with the goal of promoting a subset of items. CopyAttack is constructed to both efficiently and effectively learn policy gradient networks that first select, then further refine/craft user profiles from the source domain, and ultimately copy them into the target domain. CopyAttack’s goal is to maximize the hit ratio of the targeted items in the Top-k recommendation list of the users in the target domain. We conducted experiments on two real-world datasets and empirically verified the effectiveness of the proposed framework. The implementation of CopyAttack is available at https://github.com/wenqifan03/CopyAttack.